search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
54 MARINE INGREDIENTS


Figure 1: UV-R photoprotection mechanism strategies in marine bacteria and phytoplankton. First line of defence: UV shield. Second line of defence: Reactive Oxygen Species (ROS) scavenging. Third line of defence: UV absorbing compounds. Fourth line of defence: Cell repair


mechanisms include nucleotide excision repair (NER) or photoreactivation, among others.4 The NER pathway is a strategy used to repair DNA, damaged by intense UVR incidence. This strategy was discovered in all living being from bacteria to humans.6


In brief, the NER pathway


is a mechanism in which a damaged region of DNA is cut out and replaced by DNA synthesized using the undamaged strand as template. Biomimicry defence metabolic routes found in marine bacteria and phytoplankton with human skin make consider marine solar booster compounds perfect candidates to act avoiding or repairing the damaged tissue, acting as natural solar filters, ROS scavengers, absorptive


molecules, or damage repairers.


Marine molecules as candidates for UV-R sun protection Several adverse effects such as hyperpigmentation, burns or skin cancer are induced by UV-R. These negative impacts on skin barrier stimulates the formation of ROS, leading to a deteriorated and old skin.7


MC


Actives and Microalgae Solutions are now exploring marine bioactive molecules for use as active ingredients in skin cream formulations to combat UV-R rays adverse effects and attempt to replace artificial chemical compounds while avoiding their negative health effects and


impact on the environment. Marine phytoplankton and its associate


bacteria contain bioactive molecules to fight against UV-R, located in the cells but also in its associated microbiota. They consist of natural molecules that belong to different groups (lipids, carbohydrates, vitamins, or pigments, among others) and accomplish various functions: they act as natural sunscreen filters (NSF), ROS scavengers (RS), UV-R absorption molecules (UAM) or damage repairers (DR) (Table 1). Polyunsaturated fatty acids (PUFAs) such as


linoleic and linolenic acids are found in a wide range of green algae including Chlorella vulgaris,


TABLE 1: MARINE MOLECULES FOUND IN PHYTOPLANKTON AND CYANOBACTERIA. COSMETIC EFFICACY AND UV-R AVOIDANCE ACTION: NATURAL SOLAR FILTERS (NSF), ROS SCAVENGERS (RS), UV-R ABSORPTION MOLECULES (UAM) OR DAMAGE REPAIRERS (DR)


Molecule group Lipids Subgroup Fatty acids Chlorophylls Carotenes


a-carotene* b-carotene*


Astaxanthin Pigments Carotenoids Xantophylls Lutein*


Zeaxanthin* Echinenone*


Scytonemin Phenols Vitamins Saccharides


Monosaccharides Disaccharides


Derived compounds


Vitamin C* Galactose*


Trehalose* Mannitol*


Mycosporine-like amino acids (MAAs)


Mycosporine-glycine* Asterina-330 Porphyra-334 Shinorine


* Depicts compounds detected in Marine active ingredient Haematococcus pluvialis, Scenedesmus almeriensis


Nannochloropsis oceanica Scenedesmus sp.


Calothrix sp., Scytonema sp., Synechococcus sp.


p-coumaric acid* Cyanobacteria and Chlorophyta, among others. Vitamin E*


Cyanobacteria, Chlorophyta, Bacillariophyceae, among others.


Cyanobacteria, Chlorophyta, Bacillariophyceae, among others.


Arthrospira platensis, Chlorella marina Chlorellasp. Brown algae


Gloeocaspa sp., Nostoc commun, Anabaena sp., Oscillatoria sp.


Lyngbya sp., Scenedesmus sp. Lyngbya sp., Porphyra sp.


Lyngbya sp., Chlorella minutissima


Compound Oleic acid*


Linoleic acid* Linolenic acid* Palmitoleic acid*


Examples of producers


Chlorella vulgaris, Selenastrum minutum, Nannochloropsis oculata


Chlorella vulgaris, Arthrospira platensis Dunaliella salina


Dunaliella salina, Coelastrella striolata, Scenedesmus almeriensis


Cosmetic efficacy/mechanism Stratrum comeum lipid matrix formation Ros scavenging Avoid lipid peroxidation/ ROS scavenging


Haematococcus pluvialis, Scenedesmus almeriensis ROS scavenging/ TBARS reduction/ antioxidant enzymes enhancement


Stratrum corneum lipid matrix formation/ Avoid lipid peroxidation


Stratrum corneum lipid matrix formation/ Avoid lipid peroxidation/ ROS scavenging


ROS scavenging


ROS scavenging/ decrease thymine dimer formation ROS scavenging/Collagen biosynthesis


ROS scavenging/ Collagen biosynthesis


Antioxidant/Avoid lipid peroxidation ROS scavenging


Collagen biosynthesis ROS scavenging


Antioxidant/avoid lipid peroxidation Antioxidant/avoid lipid peroxidation


Suppression of ROS production/MMPs inhibition/ collagen and elastin biosynthesis


Avoid lipid peroxidation Action NSF/DR UAM/RS UAM/RS UAM/RS UAM/NSF/DR


UAM/NSF/DR UAM/RS


UAM/RS RS/DR


RS/DR


NSF/RS/DR UAM/RS


DR UAM/RS


UAM/RS/NSF/DR UAM/RS/NSF/DR RS/NSF/DR NSF/DR


References 8 10 11 15 14


14 13


4


17 18


19 21


22 23


24


PERSONAL CARE September 2023


www.personalcaremagazine.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105