search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
44 MARINE INGREDIENTS


Sargassum bioferment Regulation of miRNAs involved in DNA repair processes


miR-96


miR-598 miR-720 miR-429


0


Reduction in miRNA level (%)* 75


25 50 100


*Corresponds to an increase in gene expression / protein production


Figure 6: Beneficial regulation of microRNAs involved in DNA repair processes and ECM synthesis


sensitive ‘biological glue in the ECM called ECM1 was also induced.24,25


LAMA2, an essential


factor for skin cell renewal typically decreased by photoageing25


, was elevated in Sargassum


bioferment-treated skin cells. Similarly, the level of TIMP3, which is usually diminished in response to UV and ageing,26


was


renewed with Sargassum bioferment. Notably, TIMP3 helps inhibit UVB-induced inflammatory cytokines.27 Lastly, the Sargassum bioferment


strongly repressed expression of the matrix metalloproteinases, MMP1 and MMP3, involved in ECM degradation. By reducing these matrix- degrading enzymes, the Sargassum bioferment helps to support a more robust ECM in the skin. Together, these results show that the


Sargassum bioferment beneficially modulates the expression of essential ECM genes to maintain a youthful appearance of UV-exposed skin.


Conclusion DermalRx FSE supports the skin for applications in pre- and post-sun care products and as part of protective anti-pollution and anti- ageing regimens, exemplifying what is possible when marine species and biotechnology are combined to manufacture potent, biofunctional materials.


References 1. Pereira L. Macroalgae. Encyclopedia. 2021;1(1):177-88


2. Kumar LRG, Paul PT, Anas KK, Tejpal CS, Chatterjee NS, Anupama TK et al. Phlorotannins-bioactivity and extraction perspectives. J. Appl. Phycol. 2022:1-13


3. Flament F, Bazin R, Laquieze S, Rubert V, Simonpietri E, Piot B. Effect of the sun on visible clinical signs of aging in Caucasian skin. Clin. Cosmet. Investig. Dermatol. 2013;6:221-32


4. Kappes UP, Luo D, Potter M, Schulmeister K, Runger TM. Short- and long-wave UV light (UVB and UVA) induce similar mutations in human skin cells. J. Invest. Dermatol. 2006;126(3):667-75


5. Mouret S, Baudouin C, Charveron M, Favier PERSONAL CARE September 2023


nucleotide excision repair base excision repair double strand break repair


ECM protection


nucleotide excision repair double strand break repair


cell cycle delay for DNA repair apoptosis for severe damage


ECM synthesis barrier integrity


Sargassum bioferment Regulation of gene expression


type V collagen


COL1A1 COL5A1


type VII collagen


matrix associated protein 1


COL7A1 ECM1


LAMA2 laminin MMP inhibitor 3


SPARCosteonectin TIMP3


metalloproteinase 1


MMP1 MMP3


matrix metalloproteinase 3 0% 100% 200% 400% 600% 800% Gene Expression


Figure 7: The Sargassum bioferment promotes beneficial modulation of genes involved in ECM maintenance


A, Cadet J, Douki T. Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation. Proc. Natl. Acad. Sci. USA. 2006;103(37):13765-70


6. Swenberg JA, Lu K, Moeller BC, Gao L, Upton PB, Nakamura J et al. Endogenous versus exogenous DNA adducts: their role in carcinogenesis, epidemiology, and risk assessment. Toxicol. Sci. 2011;120 Suppl 1:S130-45


7. Lodish HF. Molecular Cell Biology. 6th ed. New York: W.H. Freeman; 2008


8. Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH. Understanding nucleotide excision repair and its roles in cancer and ageing. Nat. Rev. Mol. Cell. Biol. 2014;15(7):465-81


9. Ravanat JL, Douki T, Cadet J. Direct and indirect effects of UV radiation on DNA and its components. J. Photochem. Photobiol. B. 2001;63(1-3):88-102


10. Bykov VJ, Sheehan JM, Hemminki K, Young AR. In situ repair of cyclobutane pyrimidine dimers and 6-4 photoproducts in human skin exposed to solar simulating radiation. J. Invest. Dermatol. 1999;112(3):326-31


11. Gorbunova V, Seluanov A, Mao Z, Hine C. Changes in DNA repair during aging. Nucleic Acids Res. 2007;35(22):7466-74.


PC


12. Lomartire S, Gonçalves AMM. An Overview of Potential Seaweed-Derived Bioactive Compounds for Pharmaceutical Applications. Mar. Drugs. 2022;20(2)


13. Chouh A, Nouadri T, Catarino MD, Silva AMS, Cardoso SM. Phlorotannins of the Brown Algae Sargassum vulgare from the Mediterranean Sea Coast. Antioxidants (Basel). 2022;11(6)


14. Gomez I, Huovinen P. Induction of phlorotannins during UV exposure mitigates inhibition of photosynthesis and DNA damage in the kelp Lessonia nigrescens. Photochem. Photobiol. 2010;86(5):1056-63


15. Prasedya ES, Syafitri SM, Geraldine B, Hamdin CD, Frediansyah A, Miyake M et al. UVA Photoprotective Activity of Brown Macroalgae Sargassum cristafolium. Biomedicines. 2019;7(4)


16. Birkemeyer C, Lemesheva V, Billig S, Tarakhovskaya E. Composition of Intracellular and Cell Wall-Bound Phlorotannin Fractions


in Fucoid Algae Indicates Specific Functions of These Metabolites Dependent on the Chemical Structure. Metabolites. 2020;10(9)


17. Wang M, Hu C, Barnes BB, Mitchum G, Lapointe B, Montoya JP. The great Atlantic Sargassum belt. Science. 2019;365(6448):83-7


18. Majchrzak W, Motyl I, Śmigielski K. Biological and Cosmetical Importance of Fermented Raw Materials: An Overview. Molecules. 2022;27(15)


19. Kim B, Cho H-E, Moon SH, Ahn H-J, Bae S, Cho H-D, et al. Transdermal delivery systems in cosmetics. Biomedical Dermatology. 2020;4(1):10


20. Scacchi B, Costello B, Ceccoli J, Lawrence P. Brown Seaweed Ferment Propagates UV Damage Protection for Skin. Cosmetics & Toiletries. 2022;137(7):DM19-DM29


21. Mohr AM, Mott JL. Overview of microRNA biology. Semin. Liver Dis. 2015;35(1):3-11


22. Kraemer A, Chen IP, Henning S, Faust A, Volkmer B, Atkinson MJ et al. UVA and UVB irradiation differentially regulate microRNA expression in human primary keratinocytes. PLoS One. 2013;8(12):e83392


23. Rentz TJ, Poobalarahi F, Bornstein P, Sage EH, Bradshaw AD. SPARC regulates processing of procollagen I and collagen fibrillogenesis in dermal fibroblasts. J. Biol. Chem. 2007;282(30):22062-71


24. McCabe MC, Hill RC, Calderone K, Cui Y, Yan Y, Quan T et al. Alterations in extracellular matrix composition during aging and photoaging of the skin. Matrix Biology Plus. 2020;8:100041


25. Sercu S, Zhang M, Oyama N, Hansen U, Ghalbzouri AE, Jun G et al. Interaction of extracellular matrix protein 1 with extracellular matrix components: ECM1 is a basement membrane protein of the skin. J. Invest. Dermatol. 2008;128(6):1397-408


26. Lago JC, Puzzi MB. The effect of aging in primary human dermal fibroblasts. PLoS One. 2019;14(7):e0219165


27. Park S, Kim K, Bae IH, Lee SH, Jung J, Lee TR et al. TIMP3 is a CLOCK-dependent diurnal gene that inhibits the expression of UVB-induced inflammatory cytokines in human keratinocytes. The FASEB Journal. 2018;32(3):1510-23


www.personalcaremagazine.com matrix


*** p<0.001 ** p<0.01 * p<0.05


type I collagen


***


***


*** *** *** ** *** ** *


decreased expression of genes involved in ECM degradation


increased expression of genes supporting ECM biosynthesis


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105