This page contains a Flash digital edition of a book.
Trans RINA, Vol 156, Part C1, Intl J Marine Design, Jan - Dec 2014


1 2 3


4 5 6 7


8


9


10


11 12 13


Figure 10: Trimaran force cross section positions Figure 8: Cross section of boat meshed


The material model used is based on a medium grade aluminium alloy with the properties listed in Table 2. As the strain rate effects on aluminium are negligible, a *MAT_PLASTIC_KINEMATIC material model chosen [15].


was


6 FEA CRASH RESULTS As the system is a conservative system, the total energy, which is initially kinetic energy, will convert entirely in deformation, or potential energy. As the boat’s mass is 1580 tonnes and its velocity 20,000mm/s, its total energy is 3.16E8 J, as can be observed in Figure 11. The kinetic energy changing of curvature at 1.0s suggests that the main impact is complete at that time and that the vessel rounds from the rigid wall.


Aluminium (deformable) – structural material


Aluminium (rigid) – for boat boundary condition


3 2.8e-9


70000


0.3 20 2.8e-9 70000 0.3 Table 2: Standard medium grade aluminium


The computer model developed to assess the structural integrity, deceleration levels and hull forces in the vessel. To monitor the boat’s impact deceleration, accelerometers were placed in the lower quill. In order to reduce the ringing due to the vibration of panels to which the accelerometers were attached to, a 20kg masses were added. The location of the accelerometers is shown in Figure 9. To monitor hull forces, section forces have been added to capture the force propagation. The trimaran force cross sections were positioned 10m apart and are displayed in Figure 10.


Figure 11: Computation stability criteria graph


100


1000 N/A N/A


Figure 12: Hull Section Forces (N) – Full Event Figure 9: Trimaran accelerometer positions


The forces in the hull are initially negative as the primary impact generates compressive forces. These values are - 42MN (-4.7E7N) at time 0.021s for cross sections 3, 4 and 5 which appear to be the stiffest part of the ship, as can be observed in Figure 12. Section 1 is weakest and bends and buckles away to absorb the crash event. At 0.06s, after the stress wave has been affected from the back of the


ship causes tension


maximum in the rearwards (21.7MN).


© 2014: The Royal Institution of Naval Architects


forces which are sections 10, 11 and 12


C-143


Material model


Density () (T/mm3)


Young’s Modulus (E) (MPa)


Poisson’s ratio ()


Yield stress (MPa)


Etan (MPa)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188