This page contains a Flash digital edition of a book.
Trans RINA, Vol 156, Part C1, Intl J Marine Design, Jan - Dec 2014


CABIN ZONE – with 1.5m overhang East


Glz% West


Venice 703.1 10 Barcelona Cairo


620.0 20 805.8


10


Cairo 7866.0 Venice 36230.0 Cairo 37070.0


Barcelona 36330.0


7700.0 30 30


Glz %


706.4 10 620.7 20 805.5


10


DAY/LOUNGE ZONE – with no shading Venice 7892.0 30 Barcelona


7933.0 30 7626.0 30 7821.0


DINING ZONE – with no shading 30 30 30


36300.0


36270.0 30 37030.0


30 30 30


Table 6 East to West Route - Variance in global energy consumption (kWh) of sensible thermal loads and lighting at idealized glazing percentages


Figure 17, 18 and 19 illustrates the variation as a percentage difference from the mean - which is acquired by considering the zones at their idealized glazing percentages at all three locations and orientations which is represented in table 5 and 6. The variance between north and south was also considered in this way,


to


account for the effects of an east-west or west-east journey, which as expected had the greatest degree of variation due


northern and southern facades being


exposed to very different levels of solar radiation. This variance from the mean is most notable in the cabin zone; where by a maximum difference range from the mean, of 14.44% to -14.55% is observed, whilst in day/lounge zone this range is reduced to 8.29% to - 7.56%. In the dining zone this range is even less at 2.57% to -3.01%.


Figure 19 Variance in total energy consumption of the Dining Zone due to change in location and orientation


To allow for a more comparable analysis and to gain clarity on the impact of orientation and location, the glazing percentage of each façade was considered to remain as a constant and determined from the mean glazing percentage obtained from the idealized glazing size methodology. The annual heating, cooling and lighting loads were then obtained and presented in tables 7 and 8.


Figure 17 Variance in total annual energy consumption of the Cabin Zone due to change in location and orientation


For the cabin zones the east and western facades had a greater annual consumption than for the comparative north and southerly orientations of between 1.0% and 5.0%. In addition to this it was also clear that the best performance occurred in Barcelona where global loads were lower than comparative designs in Cairo and Venice between 14.0% and 31.4%. This is due to the unique climate experienced in the mid Mediterranean where by its attributes are more amicable to human thermal comfort parameters. Unlike Cairo where cooling loads are more than double, dominating the thermal loads


© 2014: The Royal Institution of Naval Architects C-107


Figure 18 Variance in total energy consumption of the Day/Lounge orientation


zone due to change in location and


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188