This page contains a Flash digital edition of a book.
Trans RINA, Vol 156, Part C1, Intl J Marine Design, Jan - Dec 2014


3.4 THE INFLUENCE OF INTERIOR SURFACE REFLECTANCE


The internally reflected component plays an influential role on the performance of a daylighting strategy in that it increases the number of inter-reflections and aids the mitigation of light from the window aperture to deeper parts of the day lit zone. An obvious observation is that natural light rapidly reduces from the window aperture within the first 3 m from the façade (as illustrated in figure 8). The influence of reflectance can be seen to increase both the depth and amount of light penetrating the zone, consequently reducing the annual lighting load of the zone as can be seen in figures 20, 21 and 22 for a given glazing percentage. The case studies below were taken from a southerly orientation in Barcelona which exhibit’s the lowest annual mean lux levels. The walls, floors and ceilings were considered as perfectly diffuse sources acquiring reflectance’s outlined in table 4.


For the purposes of the worst and best case scenario figures 20, 21 and 22 represent zones that have ceiling and wall reflectance’s set at 2 levels as indicated in table 4. The process of reflection and interrefleaction is a complicated interaction to model, however, it is sufficient


to component.


Figure 20. Annual Lighting Loads at different glazing percentages and internal surface Zone)


reflectance’s (Cabin


assume the average internally reflected For this reason the floor reflectance was


considered with common obstructions such as beds carpets,


tables and desks, and assumed to reduce the


overall reflectance of the floor to the lowest level of the 2009 SLL suggestions. Illustrating the effects of this in figures 20, 21 and 22, identifies that regardless of low floor reflectance a reduction in annual lighting loads was observed for both, the cabin, lounge and dinning zone with a 30% glazed façade, saving an additional , 5.15%, 27.8% and 10.25% respectively, from the base case low level surface reflectance’s. It is also identified from these figures that the greatest reduction in annual lighting loads is experienced at 20% glazing, from which the gains seems to decrease and stabilize at 50%. The improvements to surface reflectance in accordance to the SLL guidance can help to improve lighting loads on average 4.37% for cabin zones, 22.8% for day/lounge zones and 8.4% for dining zones when considering a southerly orientation.


Overall the impact of reflectance has a significant importance on the daylighting strategy and is likely to also influence other psychological elements of the user’s experience. The importance of surface reflectance and colours is reflected in both the SLL codes [38] as well as design guides for architectural practitioners such as the BRE digest and the BS 8206-2:2008 [50]. Although identifying the annual impacts of surface reflectance it is necessary to conduct further work on the daily impacts on the user experience and visual comfort. Furthermore the specifics of interior design such as furnishings can have a significant impact on the ability of reflectance to support a natural daylighting scheme.


Figure 21. Annual lighting loads at different glazing percentages and internal surface reflectance's (day/lounge zone)


Figure 22. Annual lighting loads at different glazing percentages and internal reflectance’s (dining zone)


© 2014: The Royal Institution of Naval Architects


C-109


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188