This page contains a Flash digital edition of a book.
Trans RINA, Vol 156, Part C1, Intl J Marine Design, Jan - Dec 2014


which requires a stronger structure in that zone. Once the pressures are determined, the minimum thickness, inertia and section modulus required are calculated using the formulas given in the Lloyd’s Register design rules. These formulas take into account different coefficients depending on the structural assumptions of the model. The scantlings of the three block sections shown in Figure 4 are determined using this procedure. Including the stiffening members dimensions.


Figure 3: New CLF trimaran concept 4.1


SCANTLING PROCEDURE


For the preliminary structural design, the hull has been split in three blocks. The first one covers the engine room section, the second one is the greatest part of cargo decks and the last one considers the slamming loads at the bow. The use of aluminium alloy required to spacing of the ordinary stiffeners and the transversal primary stiffeners to be reduced to 400mm and 1600mm respectively. In order to use Lloyd’s Register rules to compute the minimum scantling dimensions required, geometrical assumptions were made. The bulkhead positions were arranged according to different criteria, such as stability and


fire protection. For this reason the original


arrangement of the steel trimaran preliminary structural design [5] were adopted for the calculations.


In order to increase the longitudinal strength, the cross deck, which links the lateral hulls and the central hull together was modified. It is the most critical zone subjected to stresses, due to the reduce strength of aluminium alloy compared to steel. It was lengthened fore of the lateral hulls and integrated into the wet deck structure along the whole length of the hull, as shown in Figure 3, to distribute stress. The geometric shape of the sections at 24m, 60m, 90m from the Aft Perpendicular are shown in Figure 4. Each of these sections are used as input geometry for each block in LR SSP software. Where constant


sections of the stiffeners have been


assumed for the length of each block. For the load estimations, the design regulations prescribe different components for the pressure acting on the hull. These are used for the computation of local design criteria. The components are determined from the environmental conditions for the specific area of operation of the craft, such as wind, wave and currents from which design data are derived.


Each structural element, such as plating, framing, double bottom structures, bulkheads, etc., have relative design pressure. Estimating these values the greatest ones are used from a parametric combination of the geometric input data. The evaluated design pressures include the effects of combined static and dynamic load components as well as the effects of impact or slamming loads. The variation of the different components of vessel design pressure with


longitudinal distance forward of Aft


Perpendicular are shown in Figure 5. The increase in pressure in the bow of the hull is due to slamming,


© 2014: The Royal Institution of Naval Architects


Figure 4: Hull Sections at 24m, 60m, 90m from the AP


Figure 4: Hull Sections at 24m, 60m, 90m from the AP


Figure length


5: Design pressure


distribution over the ship


At this preliminary design stage a main section checking is required. Due to the particular hull


shape it is C-141


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188