This page contains a Flash digital edition of a book.
Trans RINA, Vol 157, Part C1, Intl J Marine Design, Jan –Dec 2015


4 1


.1 WFSV LIFTING P ROCEDURE .


2.


The sea height should be checked and carefullly monitored to see it does not exceed 2.5m Hs. This is the design limit of the system. Once the operation has been given the go ahead by the party chief the transfer vessel drives onto the rear bollard structure at up to 100% throttle to restrict the relative motion before the lifting line is connected. At 100% throttle the bollard structure maintains a safety factor of 2.5. To help stabilise


the motion of the WFSV


during lifting lines are fixed to either side of the bow and attached to low capacity winches within the A-frame. The lifting line is connected using a robotic mounted at the top of th Ae A- frame.


3. 4.


The WFSV is lifted clear of the water by a winch


located fully longitudinally between on. the


WFSV storage frames, with control of the liftiing lines on the bow used to stabilise vessel motio The A-frame is retracted over the deck where fendered v ertically mounted bollards protect the other vessel from damage due to the n of the WFSV in high sea states. The 12 deck mounted bollards have been designed to withstand the load of the WFSV at 17deg roll angle with a design factor of 4.8. The bollards allow the transfer vessel to move freely in the fore/a


motion aft fenders. 5.


Once set down on the deck the lifting operation is complete and the lifting line can be detached in preparation for lifting another WFSV on the other side of the OSV . The lifting point on the A-frame can be moved along the crossbeam using a gantry trol ley system, shown in Figure 30. The motion will be powered by an electtrric motor driving a rack and pinion gearing system. The motion will be started manually, limit switches will stop the motion where the gantry is to be locked in place using solenoid actuated pins.


6 .


The winch is also fitted to trolley system on the deck where it is translated transversely to aliign with the lifting position of the next WFSV. This also enables bothWFSVs on the same side to be moved as longitudinally the winch sits between them.


7 .


To launch the second vessel on each side the boom crane lifts the empty storage frame over the WFSV as it moves on the motorised storage frame towards the A-frame loading position at the transom.


direction using free rotating rubber


Figure 30: Pulleywith linear bearing 4.2


FEA OFA-FRAME


The load cases were defined in accordance with Lloyd’s Register Code for Lifting Appliances in a Marine Environment. Through exa


amining the


conditions the relevant design factors were spreadsheet was created to layout the vessel and to calculate the various loa


ad cases. The operating


specified. A information two loading


scenarios examined were a 71.85tonne live load in 2.5mHs and a 91.85tonne load in 1.5mH s. The first represents the unloaded WFSV, while the second represents the WFSV loaded wit th a wind turbine gearbox weighing 30tonne. The combination of heel and pitch accelerations caused by the respective wave motions were calculated by implementing the Lloyd’s calculation tables into the excel sheet. This gave load cases normal to the deck and parallel transverse/longitudinal to the deck for maximum heel, maximum pitch and maximum combined vessel motion cases. These are summarised in table 8, where


the static component associated pitch and roll angles h loads for the have been combined with the dynamic loads from the pitch and roll accelerations.


Combination cases (kN) Normal to deck


Parallel


Rolling motion Pitching motion


Combined motion


Table 8: Load cases


To simulate the load of the loaded sheave axle in FEA, these loads were implemented a


as bearing loads applied to


the sheave block. The results from the analysis are shown in Figure 31 and Figure 32 for the 71.85tonne load in 2.5mHs and the 91.85 tonne load in 1.5mHs respectively. Where the safety fa


actors achieved are 2.24 and 1.8.


Mainprize 71.85tonnes 2.5mHs Heel = 6.53deg, trim = 3.26deg A-frame angle = 45deg


932


1587 1607


transverse 613


0 526 Parallel


Longitudinal 0


93 162


C-94


© 2015: The Royal Instittu


ution of Naval Architects


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210