This page contains a Flash digital edition of a book.
Thomas G. O’Lenick, PhD - SurfaTech Corporation, US SUN CARE


Improving sunscreen performance


a


Hydrophilic portion Hydrophobic portion


In a polar solvent b c Core


Hydrophilic group Hydrophobic group


In a non-polar solvent Figure 1: a) Behaviour of sorbeth hexaoleate in different solvents, with b) above critical concentration of entanglement (c*), and c) below c*.


Recently, there has been growing interest in sunscreen performance. This interest includes not only making more efficient formulations but also more effective formulations. There are many factors that need to be considered when determining the efficiency of sunscreen formulations, including: desired SPF,1


wavelength shift, and photostablity,3 name a few.


UVA/UVB coverage,2 just to


The quest for complete protection from the sun has led to numerous research efforts that are aimed not only effective sunscreens, but also products that efficiently use sunscreens, minimising the concentration of filters. A product that protects over a wide variety of ultraviolet (UV) spectrum and is effective has become a priority. This quest has led to a new series of amphiphilic polymers that have been developed to help improve the efficiency of sunscreens. These amphiphilic polymers have a polar core surrounded by a fatty oil soluble group. This series of polymers can provide not only a shift in wavelength, but also boost the SPF of the sunscreen formulation. These new polymers have been coined ‘Spider Esters’.


Spider esters


Spider esters were specifically designed4–8 to have a hydrophilic core surrounded by a hydrophobic periphery. This produces an amphilphilic polymer. The term, amphiphilic polymer, means that the polymer contains two distinct regions that have different polarities covalently bonded together. This amphiphilic nature makes spider


D


esters very attractive because of their unique solubilites. Amphiphilic polymers are covalently bonded together and do not have the same inherent stability issues that emulsions suffer from. Oil-in-water emulsions have pockets of hydrophobic oil contained in the core of micelles surrounded by an aqueous environment. When hydrophobic organic sunscreens are added into the emulsion, they migrate into


Table 1: Formulations 1 and 2. Part Ingredient


A Water


B C


Acrylates/C10-30 Alkyl Acrylate Crosspolymer DiSodium EDTA Triethanolamine Octocrylene Octisalate


Oxybenzone Avobenzone Stearic Acid


Glyceryl Monostearate SE Benzyl Alcohol Dimethicone


C12-15 Alcohols Benzoate


Sorbeth 2 Hexaoleate (Spider Ester ESO) Octyldodecyl Citrate Crosspolymer Octocrylene


Parabens/Phenoxyethanol


the hydrophobic micelle cores and remain suspended in a unified matrix. When the spider ester is introduced into a polar solvent, the hydrophobic periphery will collapse upon itself to minimise its contact with the solvent environment (see Fig. 1). Figure 1 allows for a simple breakdown of how these spider esters behave in solvent. Please note that this is not an actual representation, just a simple way to


% w/w


Formulation 1 Formulation 2 74.20


0.25 0.05 1.00 3.00 3.00 2.00 1.00 2.00 3.00 1.00 0.50 8.00 – –


3.00 1.00


67.20 0.25 0.05 1.00 3.00 3.00 2.00 1.00 2.00 3.00 1.00 0.50 8.00 5.00 2.00 3.00 1.00


A typical preparation procedure: Disperse part A. Add part B while heating to 80˚C stir until clear. Add part C to combined part AB while mixing. Cool with stirring to 50˚C and add part D. Continue cooling, QS and mix.


April 2012 PERSONAL CARE 101


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152