4. The area of the base of each prism (i)–(iv) is given. Calculate the heights. Give your answers to one decimal place, where necessary. (i)
(ii) (iii) (iv) 29 cm2 Volume = 392 cm3 40 cm2 h h Volume = 180 cm3 Volume = 677 ⋅ 74 m3 72.1 m2 h
4 mm2 h Volume = 46 ⋅ 88 mm3
5. A solid cylinder has a diameter of 15 cm and a height of 26 cm. (i) Find the volume of the cylinder. Give your answer to three signifi cant fi gures. (ii) Find the total surface area of the cylinder. Give your answer to one decimal place.
6. Air is leaking from a spherical advertising balloon at the rate of 9 m3 per minute.
If the radius of the balloon is 1 ⋅ 5 metres, calculate how long it will take for the balloon to empty fully. Round your answer to the nearest minute. (Let π = 3 ⋅ 14)
7. The diagram shows a large tin of pet food in the shape of a cylinder. The tin has a radius of 6 ⋅ 5 cm and a height of 11 ⋅ 5 cm. A pet food company wants to make a new size of tin. The new tin will have a radius of 5 ⋅ 8 cm. It will have the same volume as the fi rst tin.
(i) Calculate the height of the new tin. Give your answer correct to one decimal place.
(ii) The company wants to create a label to completely surround the curved surface area of the new tin. Calculate the minimum area of the label required.
8. The volume of Earth is 1·08 × 1012 The volume of Jupiter is 1·43 × 1015
km3 . km3 .
Assuming both Earth and Jupiter are spheres, calculate: (i) The radius of Earth (ii) The radius of Jupiter
(iii) By how many percent is the radius of Jupiter larger than the radius of Earth? Give all answers to the nearest whole number.
9. Daisy wants to fi ll 12 hanging baskets with compost. Each hanging basket is a hemisphere with an internal diameter of 40 cm. She has four bags of compost. There are 50 litres of compost in each bag.
(i) Calculate the volume of one hanging basket.
(ii) Does Daisy have enough compost to fi ll the 12 hanging baskets? Justify your answer.
1 000 cm3
10. You have a number of rectangular tiles with a length of x cm and height of ( x + 7) cm. Some of these tiles are used to form the shape shown, which is six tiles long and four tiles high.
(i) Write expressions, in terms of x , for (a) the length and (b) the height of this shape.
The length and the height of this shape are equal. (ii) Write down an equation in terms of x to represent this. (iii) Solve this equation to fi nd the value for x . (iv) Hence, or otherwise, calculate the area of this shape.
76 Linking Thinking 2 height
= 1 litre x
x + 7 length 6.5 cm 11.5 cm
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220 |
Page 221 |
Page 222 |
Page 223 |
Page 224 |
Page 225 |
Page 226 |
Page 227 |
Page 228 |
Page 229 |
Page 230 |
Page 231 |
Page 232 |
Page 233 |
Page 234 |
Page 235 |
Page 236 |
Page 237 |
Page 238 |
Page 239 |
Page 240 |
Page 241 |
Page 242 |
Page 243 |
Page 244 |
Page 245 |
Page 246 |
Page 247 |
Page 248 |
Page 249 |
Page 250 |
Page 251 |
Page 252 |
Page 253 |
Page 254 |
Page 255 |
Page 256 |
Page 257 |
Page 258 |
Page 259 |
Page 260 |
Page 261 |
Page 262 |
Page 263 |
Page 264 |
Page 265 |
Page 266 |
Page 267 |
Page 268 |
Page 269 |
Page 270 |
Page 271 |
Page 272 |
Page 273 |
Page 274 |
Page 275 |
Page 276 |
Page 277 |
Page 278 |
Page 279 |
Page 280 |
Page 281 |
Page 282 |
Page 283 |
Page 284 |
Page 285 |
Page 286 |
Page 287 |
Page 288 |
Page 289 |
Page 290 |
Page 291 |
Page 292 |
Page 293 |
Page 294 |
Page 295 |
Page 296 |
Page 297 |
Page 298 |
Page 299 |
Page 300 |
Page 301 |
Page 302 |
Page 303 |
Page 304 |
Page 305 |
Page 306 |
Page 307 |
Page 308 |
Page 309 |
Page 310 |
Page 311 |
Page 312 |
Page 313 |
Page 314 |
Page 315 |
Page 316 |
Page 317 |
Page 318 |
Page 319 |
Page 320 |
Page 321 |
Page 322 |
Page 323 |
Page 324 |
Page 325 |
Page 326 |
Page 327 |
Page 328 |
Page 329 |
Page 330 |
Page 331 |
Page 332 |
Page 333 |
Page 334 |
Page 335 |
Page 336 |
Page 337 |
Page 338 |
Page 339 |
Page 340 |
Page 341 |
Page 342 |
Page 343 |
Page 344 |
Page 345 |
Page 346 |
Page 347 |
Page 348 |
Page 349 |
Page 350 |
Page 351 |
Page 352 |
Page 353 |
Page 354 |
Page 355 |
Page 356 |
Page 357 |
Page 358 |
Page 359 |
Page 360 |
Page 361 |
Page 362 |
Page 363 |
Page 364 |
Page 365 |
Page 366 |
Page 367 |
Page 368 |
Page 369 |
Page 370 |
Page 371 |
Page 372 |
Page 373 |
Page 374 |
Page 375 |
Page 376 |
Page 377 |
Page 378 |
Page 379 |
Page 380 |
Page 381 |
Page 382 |
Page 383 |
Page 384 |
Page 385 |
Page 386 |
Page 387 |
Page 388 |
Page 389 |
Page 390 |
Page 391 |
Page 392 |
Page 393 |
Page 394 |
Page 395 |
Page 396 |
Page 397 |
Page 398 |
Page 399 |
Page 400 |
Page 401 |
Page 402 |
Page 403 |
Page 404 |
Page 405 |
Page 406