search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Revision questions


8A Core skills 1. (i) 58°, straight angle followed by corresponding angle


(ii) 30°, isosceles triangle followed by 3 angles in a triangle


(iii) 55°, 3 angles of a triangle sum to 180°


(iv) 81°, straight angle equals 180° (v) 31°, vertically opposite, opposite angles in a parallelogram, three angles in a triangle


(vi) 35°, alternate followed by three angles in a triangle


2. (i) x = 60°, equilateral triangle, 3 angles in a triangle


(ii) x = 42° (straight angle), y = 107° (straight angle), z = 31° (3 angles of a triangle)


(iii) x = 27° (straight then corresponding), y = 119° (straight then corresponding), z = 92° (3 angles in a triangle)


(iv) x = 115° (straight then corresponding), y = 65° (corresponding), z = 65° (opposite angle in a parallelogram)


(v) x = 55° (straight angle), y = 39° (straight angle), z = 86° (3 angles in a triangle)


(vi) x = 35° (straight angle), y = 85° (straight angle), z = 30° (3 angles in a triangle)


3. Many valid answers 4. (i) 62°, alternate (ii) 71°, corresponding


5. (i) 65° (ii) 25°


6. (i) 57°, alternate (ii) 71°, straight angle, then corresponding


7. 71°, isosceles, 3 angles in triangle, corresponding


8. (i) 28°, alternate (ii) 64°, corresponding to y + 36°


10.(i)


(a) |∠ACB| = 100°, |∠CAB| = 40°, |∠CBA| = 40°


(b) They are equal (c)


(ii)


In an isosceles triangle, the angles opposite the equal sides are equal


(a) |∠DBC| = 140° (b) It is equal to the sum of the 2 internal opposite angles


(c) Each exterior angle of a triangle is equal to the sum of the two interior opposite angles


11.Congruent by SSS: |AB| = |BC|, given;


|AD| = |CD|, given; |BD| = |BD|, common side


12.Congruent by SAS: |AE| = |EC|, diagonals of a parallelogram bisect


each other; |∠AEB| = |∠DEC|, vertically opposite; |BE| = |ED|, diagonals of a parallelogram bisect each other


3. (ii) 4. (i)


8B Taking it further


1. (i) 30° (ii) 80°


2. (i) Many valid answers, e.g. ∠2 and ∠4


(ii) Many valid answers, e.g. ∠4 and ∠10


(iii) ∠2 and ∠10 (iv) ∠9 = 40° and ∠10 = 140°


3. (i) 40° (ii) 2x + 35 corresponds to 5x – 85


4. (i) x = 32, 2x = 64, x + 20 = 55, 3x − 35 = 61


(ii) x = 20, 3x + 15 = 75, 7x − 35 = 105, x + 55 = 75


(iii) x = 15, y = 4, 4x − 10 = 50, 2x + 5y = 50, 6x + 10y = 130


5. 152° 6. (i) 50° (ii) 60° (iii) 70°


7. 15°, 75° 8. 60°, all angles equal and sum to 180° 10.Congruent by ASA: |∠LAM| =


|∠CMN|, corresponding (AC is a transversal on BA∥NM); |AM| = |MC|, M is the midpoint of AC; |∠AML| = |∠MCN|, corresponding (AC is a transversal on BA∥NM)


Unit 9 Working with the coordinate plane


Practice questions 9.1 1. (i) B = (−3, 7); C = (−1, −6); D = (3, −3); E = (3, 4); F = (−5, −3); H = (−3, −2); I = (8 ,0); M = (−8, 8); N = (3, −9); O = (7, −8); P = (−8, 1); Q = (−3, 0); R = (6, −8); V = (0, 1); X = (−5, −9); Z = (6, 4)


(ii)


(a) First (b) Third (c) Second (d) Fourth


(a) Midpoint = (–1, 2) (b) Midpoint = (6, 4) (c) Midpoint = (–3, –3) (4, 7)


5. (i) (ii)


(ii) (3, 4) (iii) (4⋅5, −2⋅5) (iv) (−3⋅5, −7⋅5) (v) (0⋅5, −2⋅5) (vi) (−0⋅25, 4) (−4, −4) (8, −5)


(iii) (5, 2) (iv) (−6, −7) (v)


(−2, 6) (vi) (−3, 3) 6. (i) (−0⋅5, 2⋅5) (ii) (2⋅5, −0⋅5)


7. (i) Adam (4, 5); Barry (4, 2); Cillian (−3, 1)


(ii) School (0⋅5, 1⋅5) (iii) Swimming pool (0⋅5, 3) (iv) (−3, 4) and (−3, –2)


8. Diagonals bisect each other at (5, 2) 9. (3, 8) 10.(6, 4) 11.(3, 2), (6, 4), (9, 6), (12, 8) and (15, 10)


378 Linking Thinking 2


Practice questions 9.2


1. (i) 2√3 (ii) 3√3 (iii) 2√10


2. (i) 5⋅66 (ii) 13⋅45 (iii) 5 (iv) 4⋅12 (v) 14⋅87 (vi) 17⋅03


3. (i) √85 (ii) 5√2 (iii) √61


4. Point B 5. Scalene; all sides are different lengths 6. (i) (0, 6⋅5) (ii)


7. (i)


(ii) Radius = 2√13 (7.2), diameter = 4√13 (14.4)


8. (i) 10⋅44 m (ii) 9⋅22 m (iii) 18⋅87 m


9. 6√


_ 17or 24⋅7


10.(i) Opposite sides are equal in length


11.(i) 13√ 12.|AC|2


13.(i)


(ii) Diagonals not equal = |AB|2


_ 2 or 18·38


(−0⋅5, 4)


(ii) 6⋅8 km (iii) 16.3 km


Practice questions 9.3


1. (i) Positive (ii) Negative (iii) Zero (iv) Undefined (v) Positive (vi) Negative


2. (i) 1 (ii) −4


(iii) 0 (iv) 8


(v) 1 (vi) −9


3. (i) −7 (ii) −3


(iii) –1 (iv) 5


_ 8


(v) 4. (i)


_ 11


3


(vi) −2 1


_ 5


__ 4; D; goes up 1 (rise) for every 4 across (run)


(ii) −2; C; goes down 2 (negative rise) for every 1 across (run)


(iii) 0; E; doesn’t rise or fall (iv) 3; A; goes up 3 (rise) for every 1 across (run)


(v) −5 5 for 6 across


__ 6; B; goes down (negative rise)


5. The ramp, as it has a higher slope (0⋅75) than the hill (0.6


˙)


6. Points are collinear as the slope of AB = slope of BC = slope of AC


_ 5


_ 0 , undefined


_ 5


_ 3


_ 2


+ |BC|2


|AM| = 4.03, |MB| = 4.03 (3, −1)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352  |  Page 353  |  Page 354  |  Page 355  |  Page 356  |  Page 357  |  Page 358  |  Page 359  |  Page 360  |  Page 361  |  Page 362  |  Page 363  |  Page 364  |  Page 365  |  Page 366  |  Page 367  |  Page 368  |  Page 369  |  Page 370  |  Page 371  |  Page 372  |  Page 373  |  Page 374  |  Page 375  |  Page 376  |  Page 377  |  Page 378  |  Page 379  |  Page 380  |  Page 381  |  Page 382  |  Page 383  |  Page 384  |  Page 385  |  Page 386  |  Page 387  |  Page 388  |  Page 389  |  Page 390  |  Page 391  |  Page 392  |  Page 393  |  Page 394  |  Page 395  |  Page 396  |  Page 397  |  Page 398  |  Page 399  |  Page 400  |  Page 401  |  Page 402  |  Page 403  |  Page 404  |  Page 405  |  Page 406