Practice questions 8.1
1. Draw a line segment of any length in your copybook. Mark any point p on the line segment. Draw a line perpendicular to your line segment through the point p , using a compass and straight edge.
2. (i)
Construct a line segment [AB] , 8 cm in length.
(ii) Construct the perpendicular bisector of [AB] . Mark the point of intersection of the bisector and [AB] , M .
(iii) Confi rm the perpendicular divides the
line segment [AB] in half by measuring |AM| and |BM| .
3. (i) Construct ∠XYZ of measure 60°. (ii) Construct the angle bisector of ∠XYZ .
(iii) Confi rm by measurement that ∠XYZ has been bisected.
4. Copy each of the following diagrams and construct a line perpendicular to the given line, through the given point. (i)
(ii) (iii) 7.
(i) Construct a triangle of sides 5 cm, 6 cm and 8 cm.
(ii) Measure the three angles inside the triangle and investigate if:
(a) the smallest angle is opposite the smallest side
(b) the largest angle is opposite the largest side.
8. (i) Construct a triangle DEF such that |DE| = 4 cm, |DF| = 6 cm and |∠EDF| = 40°.
(ii) Construct the perpendicular bisectors of each of the line segments [DE] , [DF] and [EF] .
(iii) The bisectors drawn in (ii) should intersect each other at a point. With this point of intersection as the centre, use a compass to draw a circle through D ,E and F . This circle is called the circumcircle.
9. (i) Construct a triangle TUV where |TU| = 6 cm, |∠VTU|= 50° and |∠VUT|= 2 |∠VTU| .
(ii) Construct the bisectors of each of the angles VTU, VUT, UVT .
(iii) The bisectors drawn in (ii) should intersect each other at a point. With this point of intersection as the centre, use a compass to draw a circle that fi ts exactly inside the triangle TUV , which touches all three sides of the triangle. This circle is called the incircle.
5. (i) Construct a rectangle of sides 6 cm and 8 cm.
(ii) Verify by measuring that both diagonals are equal in length.
6. (i) Construct an equilateral triangle PQR of side length 5 cm.
(ii) Measure the angles inside ΔPQR and use these measurements to confi rm that ΔPQR is equilateral.
10. (i) Construct the triangle XYZ with |XY| = 4 cm, |∠XYZ| = 90° and |∠YXZ| = 37°.
(ii) Measure the length of the sides [XZ] and [YZ] and use the converse of Pythagoras’s theorem to confi rm that triangle XYZ is a right-angled triangle.
11. (i) John wants to make a triangle with sides of length 5 cm, 2 cm and 10 cm. David thinks that John won’t be able to make this triangle. Give a reason why David is correct.
(ii) Change one of the lengths so that John will be able to form a triangle.
146 Linking Thinking 2
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180 |
Page 181 |
Page 182 |
Page 183 |
Page 184 |
Page 185 |
Page 186 |
Page 187 |
Page 188 |
Page 189 |
Page 190 |
Page 191 |
Page 192 |
Page 193 |
Page 194 |
Page 195 |
Page 196 |
Page 197 |
Page 198 |
Page 199 |
Page 200 |
Page 201 |
Page 202 |
Page 203 |
Page 204 |
Page 205 |
Page 206 |
Page 207 |
Page 208 |
Page 209 |
Page 210 |
Page 211 |
Page 212 |
Page 213 |
Page 214 |
Page 215 |
Page 216 |
Page 217 |
Page 218 |
Page 219 |
Page 220 |
Page 221 |
Page 222 |
Page 223 |
Page 224 |
Page 225 |
Page 226 |
Page 227 |
Page 228 |
Page 229 |
Page 230 |
Page 231 |
Page 232 |
Page 233 |
Page 234 |
Page 235 |
Page 236 |
Page 237 |
Page 238 |
Page 239 |
Page 240 |
Page 241 |
Page 242 |
Page 243 |
Page 244 |
Page 245 |
Page 246 |
Page 247 |
Page 248 |
Page 249 |
Page 250 |
Page 251 |
Page 252 |
Page 253 |
Page 254 |
Page 255 |
Page 256 |
Page 257 |
Page 258 |
Page 259 |
Page 260 |
Page 261 |
Page 262 |
Page 263 |
Page 264 |
Page 265 |
Page 266 |
Page 267 |
Page 268 |
Page 269 |
Page 270 |
Page 271 |
Page 272 |
Page 273 |
Page 274 |
Page 275 |
Page 276 |
Page 277 |
Page 278 |
Page 279 |
Page 280 |
Page 281 |
Page 282 |
Page 283 |
Page 284 |
Page 285 |
Page 286 |
Page 287 |
Page 288 |
Page 289 |
Page 290 |
Page 291 |
Page 292 |
Page 293 |
Page 294 |
Page 295 |
Page 296 |
Page 297 |
Page 298 |
Page 299 |
Page 300 |
Page 301 |
Page 302 |
Page 303 |
Page 304 |
Page 305 |
Page 306 |
Page 307 |
Page 308 |
Page 309 |
Page 310 |
Page 311 |
Page 312 |
Page 313 |
Page 314 |
Page 315 |
Page 316 |
Page 317 |
Page 318 |
Page 319 |
Page 320 |
Page 321 |
Page 322 |
Page 323 |
Page 324 |
Page 325 |
Page 326 |
Page 327 |
Page 328 |
Page 329 |
Page 330 |
Page 331 |
Page 332 |
Page 333 |
Page 334 |
Page 335 |
Page 336 |
Page 337 |
Page 338 |
Page 339 |
Page 340 |
Page 341 |
Page 342 |
Page 343 |
Page 344 |
Page 345 |
Page 346 |
Page 347 |
Page 348 |
Page 349 |
Page 350 |
Page 351 |
Page 352 |
Page 353 |
Page 354 |
Page 355 |
Page 356 |
Page 357 |
Page 358 |
Page 359 |
Page 360 |
Page 361 |
Page 362 |
Page 363 |
Page 364 |
Page 365 |
Page 366 |
Page 367 |
Page 368 |
Page 369 |
Page 370 |
Page 371 |
Page 372 |
Page 373 |
Page 374 |
Page 375 |
Page 376 |
Page 377 |
Page 378 |
Page 379 |
Page 380 |
Page 381 |
Page 382 |
Page 383 |
Page 384 |
Page 385 |
Page 386 |
Page 387 |
Page 388 |
Page 389 |
Page 390 |
Page 391 |
Page 392 |
Page 393 |
Page 394 |
Page 395 |
Page 396 |
Page 397 |
Page 398 |
Page 399 |
Page 400 |
Page 401 |
Page 402 |
Page 403 |
Page 404 |
Page 405 |
Page 406