search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Revision questions


9A Core skills 1. A is the point (–6, 7) and B is the point (8, 0). (i) Find the midpoint of AB . (ii) Find |AB| . Give your answer in surd form. (iii) Find the slope of the line AB .


2. (i) Plot the points P ( 2, 1 ) and Q ( 6, 5 ) on a Cartesian plane. Join the points to form the line [PQ] .


(ii) Using your knowledge of constructions from Linking Thinking 1, construct the perpendicular bisector of the line PQ .


(iii) From your graph, what are the coordinates of M , the midpoint of [PQ] ?


(iv) Use the midpoint formula to confi rm your answer to (iii) above.


(v) Use the length of a line formula to verify that the line you constructed in (ii) bisects [PQ] .


3. (i) Plot the points X ( 4, 2 ) , Y ( 8, 0 ) and Z ( 6, −4 ) . (ii) Verify that the triangle XYZ is isosceles.


(iii) Using the converse of Pythagoras’s theorem, determine if this triangle is right-angled. Justify your answer using mathematical calculations.


4. (i)


Plot the points H ( 2, 3 ) , I ( −1, 5 ) , J ( −2, 0 ) and K ( 1, −2 ) .


(ii) Investigate if |HK| = |IJ| . (iii) Verify |HI| = |JK| .


(iv) Find the midpoint of [HJ] and show that it is also the midpoint of [IK] .


(v) What type of shape is HIJK ? Justify your answer.


5. The pointsA andB have coordinates (5, –1) and (13, 11) respectively.


(i) Find the coordinates of the midpoint of AB .


(ii) Given that AB is a diameter of the circle C, fi nd the length of the radius of the circle C . Give your answer in surd form.


6. The points P, Q, R and S have the coordinates (1, 10), (5, 2), (11, 5) and (13, 1), respectively.


Investigate whether the lines PQ and RS are parallel.


Section A Applying our skills 173 O A B


7. The points R, S, T and U have the coordinates (11, 5), (13, 1), (14, 4) and (2, –2), respectively.


Show that the lines RS and TUare perpendicular.


8. Using coordinate geometry calculations, show that the points A ( −2, 2 ) , B ( 1, 4 ) , C ( 2, 8 ) and D ( −1, 6 ) can be joined to form a parallelogram.


9. A triangle ABC has vertices A ( −2, −2 ) , B ( 1, 8 ) and C ( 6, 2 ) . If the points D and E are the midpoints of AB and AC , show that | ED | = 1


__ 2 | BC | .


10. Points A (−1, 0 ) , B ( 0, 3 ) , C ( 8, 11 ) and D (x, y) are points on the Cartesian plane. Find the coordinates of D if ABCD is a parallelogram.


9B Taking it FURTHER


1. The diagram shows the gable end of a house. The total height is 14 m. The height to roof level is 8 m, i.e. |AE| = 8 m. A is the point (2, 0). B is the point (18, 0).


y D E C 14 m x


(i) Write down the coordinates of the points C, D and E.


(ii) Find the slope of the rafter [ED].


(iii) Calculate the total length of wood needed to build the uprights AE and BC and the pitched piece for the roof EDC .


(iv) Find the area of the gable.


9 Working with the coordinate plane


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264  |  Page 265  |  Page 266  |  Page 267  |  Page 268  |  Page 269  |  Page 270  |  Page 271  |  Page 272  |  Page 273  |  Page 274  |  Page 275  |  Page 276  |  Page 277  |  Page 278  |  Page 279  |  Page 280  |  Page 281  |  Page 282  |  Page 283  |  Page 284  |  Page 285  |  Page 286  |  Page 287  |  Page 288  |  Page 289  |  Page 290  |  Page 291  |  Page 292  |  Page 293  |  Page 294  |  Page 295  |  Page 296  |  Page 297  |  Page 298  |  Page 299  |  Page 300  |  Page 301  |  Page 302  |  Page 303  |  Page 304  |  Page 305  |  Page 306  |  Page 307  |  Page 308  |  Page 309  |  Page 310  |  Page 311  |  Page 312  |  Page 313  |  Page 314  |  Page 315  |  Page 316  |  Page 317  |  Page 318  |  Page 319  |  Page 320  |  Page 321  |  Page 322  |  Page 323  |  Page 324  |  Page 325  |  Page 326  |  Page 327  |  Page 328  |  Page 329  |  Page 330  |  Page 331  |  Page 332  |  Page 333  |  Page 334  |  Page 335  |  Page 336  |  Page 337  |  Page 338  |  Page 339  |  Page 340  |  Page 341  |  Page 342  |  Page 343  |  Page 344  |  Page 345  |  Page 346  |  Page 347  |  Page 348  |  Page 349  |  Page 350  |  Page 351  |  Page 352  |  Page 353  |  Page 354  |  Page 355  |  Page 356  |  Page 357  |  Page 358  |  Page 359  |  Page 360  |  Page 361  |  Page 362  |  Page 363  |  Page 364  |  Page 365  |  Page 366  |  Page 367  |  Page 368  |  Page 369  |  Page 370  |  Page 371  |  Page 372  |  Page 373  |  Page 374  |  Page 375  |  Page 376  |  Page 377  |  Page 378  |  Page 379  |  Page 380  |  Page 381  |  Page 382  |  Page 383  |  Page 384  |  Page 385  |  Page 386  |  Page 387  |  Page 388  |  Page 389  |  Page 390  |  Page 391  |  Page 392  |  Page 393  |  Page 394  |  Page 395  |  Page 396  |  Page 397  |  Page 398  |  Page 399  |  Page 400  |  Page 401  |  Page 402  |  Page 403  |  Page 404  |  Page 405  |  Page 406