search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
platform provider and b) the age of the existing tech stack?


When it comes to the operator side and the data source, it is always the same. We ask what you have and then adopt our ingestion structure to whatever is there. Now we have 300-plus integrations under our belt across more than 30 jurisdictions it's very easy for us to foresee how to find the route of least resistance with a partner. We find competent and complex systems inside our partner’s operations, and we know that we must adopt the structure to the source of the data that we work with.


What's the main driver for new business?


It's very diverse. Te main driver is results. We can demonstrate how we outperform campaigns at 50-100 per cent better than the legacy systems in the market. In-house teams profit from that on the CRM and engagement side. Tey also benefit on the user acquisition side whilst the C-level executives profit because they can run their operations at a far higher level of optimisation with the same team headcount.


What are the advantages of offering gaming specific solutions compared to external software provider offerings?


Tere are a lot of areas where specialisation helps. Understanding data, data structure, the business of gaming, the needs of bettors, how you define this in systems, and setting up on top of existing infrastructure.


Because you might have a large legacy system in place or certain elements that are monolithic. You can't rip these systems apart easily. But what we can now do is circumvent certain parts of this legacy infrastructure. Tis cannot be achieved with an external, monolithic solution where you're in danger of creating a Netscape moment where you're interchanging big chunks of software and not learning fast enough how to use the new one. We can be incremental and take things use case by use case. Tis is why we call them modules because they can be applied to existing structures.


Can you walk us through the AI/ML modules that Golden Whale is regularly implementing into gaming platforms?


Well, the most straightforward are the prediction models that almost everybody wants to have. Value prediction, VIP prediction and bonus usage prediction goes a long way. From there you get into churn prediction and in-session churn prediction - all are popular models. Now we have two layers on top of that. Another is incentive guidance, bet and game recommendation systems from where, going a step further, you can integrate more campaign and interaction types into the models and orchestrate those things with each other.


Tese are things that hugely reduce the need for head count in operational teams whilst addressing the complexity of user journey data far more than any human brain could. Te productivity gains are huge.


73


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170