This page contains a Flash digital edition of a book.
TECHNOLOGY UV LEDs


Increasing ultraviolet efficiency with nano-patterned sapphire


Switching from conventional patterning of sapphire to a nano-scale variant trims epitaxial growth times and materials costs while boosting extraction efficiency.


By JIANCHANG YAN, PENG DONG, AND JUNXI WANG from the INSTITUTE OF SEMICONDUCTORS AT THE CHINESE ACADEMY OF SCIENCES.


DEEP ULTRAVIOLET (DUV) sources can serve many applications, including air and water purification, disinfection, bioagent detection (see image above), curing and non-line- of-sight communication. Traditionally, the mercury lamp has served this spectral range, but it is bulky, fragile and unsuitable for providing a modulated light source.


All of these weaknesses can be addressed with a DUV LED. Following several years of research into this class of solid-state emitter, chips now span 365 nm to 210 nm, with some devices producing milliwatt levels of light output while operating for thousands of hours. It is a level of performance that is adequate for some applications, but far higher levels of performance will drive significant market penetration for the DUV LED. Today


50 www.compoundsemiconductor.net January / February 2014


it is held back by a modest internal quantum efficiency and a low light extraction efficiency, which combine to limit this chip’s external quantum efficiency and output power.


The low internal quantum efficiency stems from the high density of crystal defects – they are typically of the order of 1010


-1011 cm-2


. DUV LEDs are riddled with these defects because there is a large lattice mismatch and a significant thermal expansion mismatch between the sapphire substrate and the AlN and AlGaN epilayers that form the LED (see Figure 1). Meanwhile, light extraction is poor, due to the combination of low internal total reflection at the epi-layers’ flat interfaces and absorption of the emission from the active region by the top p-GaN.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169