This page contains a Flash digital edition of a book.
TECHNOLOGY LEDs


(see Figures 3 and 4). These characteristics show that it is feasible to integrate a GaN LED with a GaN MOS-channel HEMT process. Current- voltage characteristics for the integrated LED and HEMT are consistent with the expected behaviour for a transistor and diode connected in series: Current is limited by the LED before it turns on, and afterwards it is restricted by the transistor’s saturation current. The intensity of the LED light is fully modulated by the gate voltage of the MOS- HEMT with good linearity (see Figure 5). High temperature operation of the integrated GaN LED/transistor pair has been demonstrated up to 225 °C.


Figure 3. Optical images of the integrated GaN LED/HEMT pair in off-state (left), and with the LED lighted up (right). Inset in (a): the schematic view of the circuit configuration


Our monolithic integration demonstrates the process compatibility of GaN LEDs and GaN transistors, and in particular an approach to unifying a GaN transistor with a MOS gate. This is a noteworthy achievement, because the MOS gate process usually requires a higher thermal budget than the Schottky gate process used in the GaN HEMT.


Figure 4. Characteristics of the integrated GaN LED


multiple quantum well structure and finally p-type GaN layers.


Formation of our circuit began with a chlorine- based, inductively couple plasma reaction-ion etch of selected regions of the LED structure to expose the n-doped GaN. Further etching defined trenches between GaN LED and HEMT, isolating these devices. After that, we removed the remaining n-type GaN that was on top of the HEMT, located where the MOS-channel HEMT would be fabricated. Following this, electron beam lithography patterned submicron recess channels of the MOS-channel HEMTs. These are etched, with a subsequent wet chemical process removing any damaged that occurred.


After cleaning this structure, we deposited SiO2 as a gate dielectric, followed by polysilicon as


the gate electrodes. The ohmic contacts of the MOS-channel HEMTs and the cathode contact of the LEDs were formed at the same time. After this, the anode contacts of the GaN LED were added. Finally, the cathode of the LED was connected to the drain of the MOS-channel HEMT.


The blue-emitting LED that resulted has a dominant wavelength of 459 nm, a full-width half- maximum as narrow as 22 nm and produces a relatively linear increase in light output with current


42 www.compoundsemiconductor.net January / February 2014


The MOS gate is not just an essential element in a power transistor − it also holds the key to the future of the GaN CMOS IC platform. Integrating a GaN LED and transistor is the first step towards the creation of the light-emitting power ICs (LEPICs) platform, where a single chip contains LEDs, power transistors and logic ICs. Constructing LEPICs could revolutionise solid-


Driver circuit board of a commercial LED light bulb (Courtesy to Casey Goodwin, Smart Lighting ERC, RPI)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169