This page contains a Flash digital edition of a book.
news digest ♦ Novel Devices


the atoms in a sample, but only on the surface. We, however, can also have a look through the object. We can see the positions of atoms and observe and measure them with a precision of around 50 picometres. This means we can observe how materials interact on the atomic scale, and deduce their macroscopic properties from their microscopic characteristics.”


The new electron microscopes are also useful in biology, to examine viruses for example. And they win out over conventional electron microscopes in being less aggressive with the biological samples.


Asked why they decided to persevere where many of their colleagues had given up, both Haider and Urban say they were convinced at the time that the problem could be cracked. The three scientists based at different institutions and exploring different directions within materials science, coincided at a conference in 1989 where Rose presented his theoretical approach. “Within five minutes I had an idea for a solution, but it took me another twenty years to catch up with these five minutes,” Rose recalls.


“And the idea was a good one,” remarks colleague Urban, himself by that time a reputed scientist. The three decided to collaborate and apply for a public grant, unaware that U.S. agencies had just decided to call off the search for a higher-resolution electron microscope. But Rose, who admits to a stubborn streak, was convinced that the goal could be achieved, in that “there was no physical law to prevent it.” Determined to press on in the face of rejection, Haider, Rose and Urban approached the Volkswagen Foundation, which, as Urban explains, funds research “that is not necessarily all that close to practical developments.”


Urban admits that this was a risky career move, given the dimensions of the challenge; “But if you don’t take risks, you don’t discover new things!” And he points out the paradox that a project that struggled to find funding “has produced industrial results extremely fast.”


Adamant that it is the science only that interests him, his name does not figure on many of the patents protecting the technique, though he is “totally on board” with basic research leading to industrial developments. “When I began working with Rose and Haider, all the equipment purchased by my laboratory came from Japan. European manufacturers had abandoned the sector, because there were no new products, no innovation.”


ZnTe augments broadband terahertz radiation


A THz emitter just 40 nm thick can perform as well as much thicker traditional emitters


Metamaterials scientists at the U.S. Department of Energy’s Ames Laboratory have demonstrated broadband terahertz (THz) wave generation using metamaterials.


The metamaterial is based on zinc telluride (ZnTe).


ZnTe can be easily doped, and for this reason it is one of the more common compound semiconducting materials used in optoelectronics.


The material is important for development of various semiconductor devices, including blue LEDs, laser diodes, solar cells, and components of microwave generators. It can be used for solar cells, for example, as a back-surface field layer and p-type semiconductor material for a CdTe/ZnTe structure or in PIN diode structures.


The material can also be used as a component of ternary semiconductor compounds, such as CdxZn(1-x) Te (conceptually a mixture composed from the end- members ZnTe and CdTe), which can be made with a varying composition x to allow the optical bandgap to be tuned as desired.


A THz spectrometer driven by femtosecond laser pulses was used to demonstrate THz emission from a split-ring resonator metamaterial of single nanometre thickness


The discovery may help develop non-invasive imaging and sensing, and make possible THz-speed information communication, processing and storage. The results appeared in the January 8th issue ofNature Communications.


Terahertz electromagnetic waves occupy a middle ground between electronics waves, like microwave and radio waves, and photonics waves, such as infrared and


158 www.compoundsemiconductor.net January / February 2014


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169