This page contains a Flash digital edition of a book.
Novel Devices ♦ news digest


Due to their miniature property; they are highly versatile and flexible. The uniqueness of QD material lies in the fact that its power intensity depends on the input source and size of QD.


There are several ways to confine excitons in semiconductors, resulting in different methods to produce quantum dots. In general, quantum wires, wells, and dots are grown by advanced epitaxial techniques in nanocrystals produced by chemical methods or by ion implantation, or in nanodevices created from state-of-the- art lithographic techniques.


The QD market is expected to grow from $108.41 million that it accounts for, currently, in 2013 to $3,414.54 million in 2020, at a CAGR of 71.13 percent from 2014 to 2020. Optoelectronics applications are expected to be the major market share holder with an expected revenue generation of $2,458.47 million in 2020.


Exfoliation method paves the way for photonics and electronics


The versatility of new technique for materials shows promise as a new benchmark in exfoliation chemistry of two-dimensional chalcogenides


A team of scientists from the National University of Singapore (NUS) has developed a method to chemically exfoliate molybdenum disulphide crystals, into high quality monolayer flakes, with higher yield and larger flake size than current methods.


The exfoliated chalcogenide compound flakes can be made into a printable solution, which can be applied in printable photonics and electronics.


This breakthrough, led by Loh Kian Ping, a professor who heads the Department of Chemistry at the NUS Faculty of Science, and is also a principal investigator with the Graphene Research Centre at the Faculty, has generic applicability to other two-dimensional chalcogenides. These include tungsten diselenide and titanium disulphide, and results in high yield exfoliation for all of these two-dimensional materials.


The NUS team collaborated with scientists from the Ulsan National Institute of Science and Technology in Korea, and the findings were first published online in prestigious scientific journal Nature Communications on 2nd January 2014.


Demand for high efficiency exfoliation method


Transition metal dichalcogenides, formed by a combination of chalcogens, such as sulphur or selenium, and transition metals, such as molybdenum or tungsten, have recently attracted great attention as the next generation of two-dimensional materials due to their unique electronic and optical properties, for applications in optoelectronic devices such as thin film solars, photodetectors flexible logic circuits and sensors.


However, current processes of producing printable single layer chalcogenides take a long time and the yield is poor. The flakes produced are of submicron sizes, which make it challenging to isolate a single sheet for making electronic devices.


As most applications require clean and large-sized flakes, this pinpoints a clear need to explore new ways to make high quality single-layer transition metal dichalcogenides with high yield.


Breakthrough in production


To address the production bottleneck, the NUS team explored the metal adducts of naphthalene. They prepared naphthalenide adducts of lithium, sodium and potassium, and compared the exfoliation efficiency and quality of molybdenum disulphide generated. The processing steps are detailed below.


Schematic of pre-exfoliation, intercalation and exfoliation processes


a. Bulk molybdenum disulphide crystal was expanded by decomposition of hydrazine b.The expanded molybdenum disulphide reacted with sodium naphthalenide to form an intercalation sample, then exfoliated into single layer sheets by immersing in water. c. Scanning electron microscopy image of single layer molybdenum disulphide on silicon dioxide d. Atomic force microscopy image of single layer molybdenum disulphide on silicon dioxide e. Bulk single crystal molybdenum disulphide


January / February 2014 www.compoundsemiconductor.net 161


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169