This page contains a Flash digital edition of a book.
news digest ♦ Novel Devices


Yet when associate professor of physics Latika Menon peered under the electron microscope last fall, she discovered the exact opposite. Instead of art imitating nature, she found nature imitating art.


Transmission electron microscope cross-section of the vertical TFET. The interface of the source and channel is the point where electron tunnelling occurs. ILD is the interlayer dielectric separating the contacts. Top plane contacts are Gold (Au), Palladium (Pd), and Molybdenum (Mo). (Image: Suman Datta/Penn State)


The paper, “Demonstration of InGaAs/GaAsSb Near Broken-gap Tunnel FET with Ion=740µA/µm, GM=700µS/µm and Gigahertz Switching Performance at VDS=0.5V,” will be available in the conference proceedings publication of the IEDM.


This device was developed as part of a larger program sponsored by the National Science Foundation through the Nanosystems Engineering Research Centre for Advanced Self-Powered Systems of Integrated Sensors and Technologies (NERC-ASSIST). The broader goal of the ASSIST program is to develop battery-free, body- powered wearable health monitoring systems with Penn State, North Carolina State University, University of Virginia, and Florida International University as participating institutions.


Associate professor Latika Menon and her lab use macroscopic techniques to create nanscopic materials. (Photo by Brooks Canaday)


Menon grew up in the eastern region of India and was vaguely familiar with a cultural dance from the western state of Rajasthan known as the Bhavai pot dance. Nimble dancers sway their hips as a tall stack of wide- bellied pots balances gingerly atop their heads.


Back in the lab at Northeastern, Menon’s team recently created GaN nanowires, which bore a striking resemblance to that stack of pots.


What’s more, a postdoctoral research associate in Menon’s lab, Eugen Panaitescu, jumped on the bandwagon with a cultural art reference of his own. Panaitescu, who hails from Romania, also saw his country’s famous Endless Column reflected in the nanowires.


Dedicated to the fallen Romanian heroes of World War I, Constantin Brancusi’s 96- foot tall monolith is constructed of seventeen three- dimensional rhombuses, periodically wavering from a wider circumference to a narrower one.


Tables turn as nature imitates art


Researchers at Northeastern University have grown GaN nanowires which represent a breakthrough in processing them for these novel uses


There are examples of art imitating nature all around us - whether it’s Monet’s pastel Water Lilies or Chihuly’s glassblown Seaforms, the human conception of natural phenomena dazzles but does not often surprise.


166 www.compoundsemiconductor.net January / February 2014


But the Northeastern researchers’ nanowires aren’t just notable for their aesthetic appeal. GaN is used across a range of technologies, including most ubiquitously in LEDs. The material also holds great potential for solar cell arrays, magnetic semiconductors, high- frequency communication devices, and many other things. But these advanced applications are restricted by our limited ability to control the material’s growth on the nanoscale.


The very thing that makes Menon’s nanowires beautiful represents a breakthrough in her ability to process them for these novel uses. She deposited onto a silicon substrate small droplets of liquid gold metal, which act as catalysts to grab gaseous GaN from the atmosphere of the experimental system.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169