This page contains a Flash digital edition of a book.
Novel Devices ♦ news digest Jacques Dordain, ESA’s Director General.


“It is down to the expertise of Europe’s space industry and scientific community that this next-generation mission is now well and truly on its way to making ground-breaking discoveries about our Milky Way.”


Repeatedly scanning the sky, Gaia will observe each of the billion stars an average of 70 times each over the five years. It will measure the position and key physical properties of each star, including its brightness, temperature and chemical composition.


By taking advantage of the slight change in perspective that occurs as Gaia orbits the Sun during a year, it will measure the stars’ distances and, by watching them patiently over the whole mission, their motions across the sky.


The position, motion and properties of each star provide clues about its history, and Gaia’s huge census will allow scientists to piece together a ‘family tree’ for our home Galaxy.


The motions of the stars can be put into ‘rewind’ to learn more about where they came from and how the Milky Way was assembled over billions of years from the merging of smaller galaxies, and into ‘fast forward’ to learn more about its ultimate fate.


“Gaia represents a dream of astronomers throughout history, right back to the pioneering observations of the ancient Greek astronomer Hipparchus, who catalogued the relative positions of around a thousand stars with only naked-eye observations and simple geometry,” says Alvaro Giménez, ESA’s Director of Science and Robotic Exploration.


“Over 2000 years later, Gaia will not only produce an unrivalled stellar census, but along the way has the potential to uncover new asteroids, planets and dying stars.”


By comparing its repeated scans of the sky, Gaia will also discover tens of thousands of supernovas, the death cries of stars as they reach the end of their lives and explode. And slight periodic wobbles in the positions of some stars should reveal the presence of planets in orbit around them, as they tug the stars from side to side.


Gaia will also uncover new asteroids in our Solar System and refine the orbits of those already known, and will make precise tests of Einstein’s famous theory of General Relativity.


After five years, the data archive will exceed 1 Petabyte or 1 million Gigabytes, equivalent to about 200 000 DVD’s worth of data. The task of processing and


analysing this mountain of data will fall to the Gaia Data Processing and Analysis Consortium, comprising more than 400 individuals across at scientific institutes across Europe.


“Where Hipparcos catalogued 120,000 stars, Gaia will survey almost 10,000 times as many and at roughly forty times higher precision,” says Timo Prusti, ESA’s Gaia project scientist.


“Along with tens of thousands of other celestial and planetary objects, this vast treasure trove will give us a new view of our cosmic neighbourhood and its history, allowing us to explore the fundamental properties of our Solar System and the Milky Way, and our place in the wider Universe.”


“After years of hard work and determination of everyone involved in the mission, we are delighted to see our Gaia discovery machine on the road to L2, where we will continue the noble European tradition of star charting to decipher the history of the Milky Way,” adds Giuseppe Sarri, ESA’s Gaia project manager.


The spacecraft was designed and built by Astrium, with a core team composed out of Astrium France, Germany and the United Kingdom.


Tiny Quantum Dots boost charge transfer in solar cells


A single-particle study identifies a possible path to improved conversion of sunlight to electricity in photovoltaic devices and LEDs


Quantum dots - tiny semiconductor crystals with diameters measured in billionths of a metre - have enormous potential for applications that make use of their ability to absorb or emit light and/or electric charges.


Examples include more vividly coloured LEDs, photovoltaic solar cells, nanoscale transistors, and biosensors. But because these applications have differing and sometimes opposite requirements, finding ways to control the dots’ optical and electronic properties is crucial to their success.


In a recent study in the journal Chemical Communications, scientists at the U.S. Department of Energy’s Brookhaven National Laboratory, Stony Brook University, and Syracuse University show that shrinking the core of a quantum dot can enhance the ability of a surrounding polymer to extract electric charges generated in the dot by the absorption of light.


January / February 2014 www.compoundsemiconductor.net 163


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169