This page contains a Flash digital edition of a book.
Solar ♦ news digest the lowest cost for the customers.


“We are delighted to announce the license of our technology leading to a second source for our products for our key GaAs customers ,” says Bernard Aspar, Senior Vice President and Soitec’s Communication & Power Business Unit General Manager.


“This collaborative agreement will reinforce our GaAs technology and product know-how while, at the same time, offering Soitec’s customers supply-chain security,” adds Yung-Chung Kao, IntelliEPI President and CEO.


GaAs is a compound of the elements gallium and arsenic. It is a III-V semiconductor, and is used in the manufacture of devices such as microwave frequency integrated circuits, monolithic microwave integrated circuits, infrared LEDs, laser diodes, solar cells and optical windows.


GaAs is often used as a substrate material for the epitaxial growth of other III-V semiconductors including InGaAs and GaInNAs.


CPV tipped to finally grow to expectations


The situation is changing rapidly as advancements in CPV technology reduce costs


After years of slow progress, the global market for concentrated photovoltaic (CPV) systems is entering a phase of explosive growt.


Global installations are set to boom by 750 percent from 2013 to the end of 2020.


CPV installations are projected to rise to 1,362 megawatts in 2020, up from 160 megawatts in 2013, according to the new report entitled “Concentrated PV (CPV) Report – 2013” from IHS Inc. Installations will expand at double-digit percentages every year through 2020.


CPV technology employs lenses or mirrors to focus sunlight onto solar cells. But while this allows for more efficient PV energy generation, the use of additional optics for focusing sunlight has also driven up the cost of CPV compared to conventional PV installations, limiting the acceptance of concentrated solar solutions.


Nevertheless, the situation is changing rapidly as advancements in CPV technology reduce costs.


“What is happening in today’s CPV market is very similar


to that of the overall PV space in 2007, beset by high costs and an uncertain outlook,” said Karl Melkonyan, photovoltaic analyst at IHS.


He adds,“However, the CPV market in 2013 is on the verge of a breakthrough in growth. Costs for CPV have dropped dramatically during 2013 and are expected to continue to fall in the coming years. Furthermore, when viewed from the perspective of lifetime cost, CPV becomes more competitive with conventional PV in large ground-mount systems in some regions.”


Prices for CPV are retreating as manufacturing processes progress down the learning curve.


Average installed pricing for high-concentration PV (HCPV) systems are estimated to have decreased to $2.62 per watt in 2013, down 25.8 percent from $3.54 per watt in 2012. The decline is being driven by rising volumes and improved system efficiencies.


Prices will slide further at an annual compound rate of 15 percent from 2012 to 2017, IHS forecasts, falling to $1.59 by the end of 2017.


In the conventional PV market, cost analysis predominantly focuses on the module price-per-watt and the total installed cost-per-watt. When comparing the installed cost-per-watt of conventional PV to CPV, the cost of conventional PV is significantly lower.


This is mainly due to the higher panel cost of CPV, given that CPV suppliers have yet to achieve the economies of scale, as well as a better balance of system and installation cost, because of the required tracker system.


To be sure, conventional PV has a lower upfront cost and appears to be a more attractive option based on upfront system costs. However, this does not take into account the overall cost of the system over its lifetime, nor does it consider the energy yield of the system.


Instead, it is important to compare the levelized cost of electricity (LCOE), IHS believes. The LCOE estimates the cost of generating electricity at the point of connection, dividing the total lifetime system costs by the total energy produced over the system’s lifetime. Such a calculation is also necessary in order to compare the competitiveness of PV and CPV with that of conventional power generation.


Using the LCOE, IHS predicts that system costs for HCPV will remain low enough to compete with conventional PV for large commercial, ground-mount systems in target regions. These are the areas with hot, dry climates and high daily irradiation at more than 6.0 kilowatt-hours per square meter of direct normal irradiation (DNI).


January / February 2014 www.compoundsemiconductor.net 133


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169