This page contains a Flash digital edition of a book.
news digest ♦ Novel Devices


The reported strained germanium p-channel FinFETs on SiGe trench buffer achieved peak transconductance (gmSAT) values of 1.3mS/µm at VDS of 0.5V with good short channel control down to 60nm gate length. The transconductance to subthreshold slope ratio of the devices (gmSAT/SSSAT) is high compared to published relaxed germanium FinFET devices.


Future developments will focus on improving the device performance through p-doping in the SiGe, optimising silicon cap passivation thickness on the germanium, and improving the gate wrap of the channel.


“Unlike published germanium FinFETs, this work demonstrates a Ge-SiGe heterostructure-based quantum-well device in a FinFET form, which not only provides strain benefits but also- enhancesshort-channel control,” says Nadine Collaert, program manager of the Ge/IIIV device R&D.


“Just recently, we reported the implementation of IIIV material into the device architecture using a fin replacement process,” states Aaron Thean, director of the logic R&D program at imec. “This new achievement, implementing germanium into the channel through our fin replacement process, is another key ingredient to our menu of process possibilities for monolithic heterogeneous integration to extend CMOS and SOCs.”


Imec’s research into next-generation FinFETs is part of its core CMOS program, in cooperation with key partners including Intel, Samsung, TSMC, Globalfoundries, Micron, SK Hynix, Toshiba/Sandisk, Panasonic, Sony, Qualcomm, Altera, Fujitsu, nVidia and Xilinx.


Versatile GaAs-AlGaAs nanowire lasers


III-V nanowires could potentially be used in multiple applications if several problems are overcome. These applications include silicon-on-chip optical interconnects, optical transistors, integrated optoelectronics for telecoms, laser arrays and bbiological and environmental sensing


Thread-like semiconductor structures called nanowires, so thin that they are effectively one-dimensional, show potential as lasers. These lasers could be used for applications in computing, communications, and sensing.


Now, scientists at the Technische Universität München (TUM) have demonstrated laser action in semiconductor nanowires that emit light at technologically useful wavelengths and operate at room temperature.


168 www.compoundsemiconductor.net January / February 2014


Scanning electron micrograph of the as-grown core-shell GaAs-Al0.25Ga0.75As NWs revealing typical lengths ranging from 11 to 16 μm and an areal density of the order of ~108 cm−2


The nanowires’ tailored core-shell structure enables them to act both as lasers, generating coherent pulses of light, and as waveguides, similar to optical fibres. Like conventional communication lasers, these nanowires are made of GaAs-AlGaAs semiconductors, with the right bandgap to emit light in the near-infrared.


A unique advantage, Finley explains, is that the nanowire


They have documented this breakthrough in the journal Nature Communications and in two Nano Letters papers, where they have disclosed further results showing enhanced optical and electronic performance.


“Nanowire lasers could represent the next step in the development of smaller, faster, more energy-efficient sources of light,” says Jonathan Finley, director of TUM’s Walter Schottky Institute.


Potential applications include on-chip optical interconnects or even optical transistors to speed up computers, integrated optoelectronics for fibre-optic communications, and laser arrays with steerable beams.


“But nanowires are also a bit special,” Finley adds, “in that they are very sensitive to their surroundings, have a large surface-to-volume ratio, and are small enough, for example, to poke into a biological cell.” Thus nanowire lasers could also prove useful in environmental and biological sensing.


These experimental nanowire lasers emit light in the near-infrared, approaching the “sweet spot” for fibre-optic communications. They can be grown directly on silicon, presenting opportunities for integrated photonics and optoelectronics. And they operate at room temperature, a prerequisite for real-world applications.


Tailored in the lab, with an eye toward industry


Tiny as they are - a hundred to a thousand times thinner than a human hair - the nanowire lasers demonstrated at TUM have a complex “core-shell” cross-section with a profile of differing semiconductor materials tailored virtually atom by atom.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169