ANTI-POLLUTION 100% 100% 100% 80% 92% 60% 93% 74% 40%
63% 63%
74% 92% 93%
43 carnosic acid. Phytochemistry. 2015; 115:9-19
5. Offord EA, Gautier JC, Avanti O et al. Photoprotective potential of lycopene, beta-carotene, vitamin E, vitamin C and carnosic acid in UVA-irradiated human skin fibroblasts. Free Radic. Biol. Med. 2002; 32(12):1293-1303
6. Park M, Han J, Lee CS et al. Carnosic acid, a phenolic diterpene from rosemary, prevents UV-induced expression of matrix metalloproteinases in human skin fibroblasts and keratinocytes. Exp. Dermatol. 2013; 22(5):336-341
20%
7. Oh J, Yu T, Choi SJ et al. Syk/Src pathway- targeted inhibition of skin inflammatory responses by carnosic acid. Mediators Inflamm. 2012; 781375
0% UVA
0.003% BHT
tocopherols
0.003% Mixed
Cosphaderm Tocopharin
0.003%
Cosphaderm Tocopharin
Figure 3: Fluorometrically determined relative ROS quantity in human keratinocytes after 24- hour incubation with the test substances and subsequent two-hour UVA irradiation. Statistical significance is indicated by * for p < 0.05 and ** for p < 0.01
Biomolecules. 2015; 5(2):545-589
2. Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - a
review. Int. J. Cosmet. Sci. 2005; 27(1):17-34
3. Petruk G, Del Giudice R, Rigano MM et al. Antioxidants from Plants Protect against Skin Photoaging. Oxid. Med. Cell. Longev. 2018; 1454936
4. Birtić S, Dussort P, Pierre FX et al. (2015) 0.03%
8. Reuter J, Jocher A, Hornstein S et al. Sage extract rich in phenolic diterpenes inhibits ultraviolet-induced erythema in vivo. Planta Med. 2007; 73(11):1190-1191
9. Tada M, Ohkanda T, Kurabe J. Syntheses of carnosic acid and carnosol, anti-oxidants in Rosemary, from pisiferic acid, the major constituent of Sawara. Chem. Pharm. Bull. (Tokyo), 2010; 58(1):27-29
10. Loussouarn M, Krieger-Liszkay A, Svilar L et al. Carnosic Acid and Carnosol, Two Major Antioxidants of Rosemary, Act through Different Mechanisms. Plant Physiol. 2017; 175(3):1381-1394
11. Valgimigli L. Lipid Peroxidation and Antioxidant Protection. Biomolecules. 2013; 13(9):1291
www.personalcaremagazine.com
October 2024 PERSONAL CARE
ROS Levels
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108