search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
64 ANTI-AGEING A Baseline Day 10 Day 22


20 Abdel-Malek ZA et al. Melanoma prevention strategy based on using tetrapeptide alpha-MSH analogs that protect human melanocytes from UV- induced DNA damage & cytotoxicity. FASEB J. 2006. 20(9): 1561-3


21 Sklar LR et al. Effects of ultraviolet radiation, visible light & infrared radiation on erythema & pigmentation: A review. Photochem. Photobiol. Sci. 2013. 12(1): 54-64


22 Krutmann J et al. The skin aging exposome. J. Dermatol. Sci. 2017. 85(3): 152-161


UV only


30 ppm Tanning peptide


B Baseline Day 10 UV only


30 ppm Tanning peptide


Day 22


23 Raj N et al. Variation in the activities of late stage filaggrin processing enzymes, calpain-1 & bleomycin hydrolase, together with pyrrolidone carboxylic acid levels, corneocyte phenotypes & plasmin activities in non-sun exposed & sun-exposed facial stratum corneum of different ethnicities. Int. J. Cosmet. Sci. 2016. 38(6): 576-575.


24 Ya-Xian Z, Suetake T, Tagami H. Number of cell layers of the stratum corneum in normal skin - relationship to the anatomical location on the body, age, sex & physical parameters. Arch. Dermatol. Res. 1999. 291(10): p. 555-9.


UV only


30 ppm Tanning peptide


UV only


30 ppm Tanning peptide


Figure 6: Transfer of tanning effect on forearm Note: As seen in Figures 4 and 5, to average facial images in method 2. D10 & D22 show split face simulations of tanning UV-irradiation only


(left side), and with UV-irradiation plus 30 ppm SG-peptide formulation (right side). a) Subject 3, b) Subject 6


References 1 Bissett, DL et al. Topical niacinamide reduces yellowing, wrinkling, red blotchiness & hyperpigmented spots in ageing facial skin. Int. J. Cosmet. Sci. 2004. 26(5):231-8


2 Sanches Silveira JE, Myaki Pedroso DM. UV light & skin aging. Rev. Environ. Health. 2014. 29(3): 243-54


3 Castanet J, Ortonne JP. Pigmentary changes in aged & photoaged skin. Arch. Dermatol. 1997. 133(10):1296-9


4 Marionnet C et al. UVA1-induced skin darkening is associated with molecular changes even in highly pigmented skin individuals. J. Invest. Dermatol. 2017. 137(5): 1184-1187.


5 Schallreuter KU et al. Regulation of melanogenesis: Controversies & new concepts. Exp. Dermatol. 2008. 17(5): 395-404


6 Cui R et al. Central role of p53 in the suntan response & pathologic hyperpigmentation. Cell. 2007. 128(5): 853-64


7 Duteil L et al. Differences in visible light- induced pigmentation according to wavelengths: A clinical & histological study in comparison with UVB exposure. Pigment Cell Melanoma Res. 2014. 27(5): p. 822-6


8 Duteil L et al. A method to assess the protective efficacy of sunscreens against visible light-induced pigmentation. Photodermatol. Photoimmunol. Photomed. 2017. 33(5): 260-266


9 Randhawa M et al. Visible light induces melanogenesis in human skin through a photoadaptive response. PLoS One. 2015. 10(6): e0130949


PERSONAL CARE March 2022


10 Chen H, Weng Q-Y, Fisher DE. UV signalling pathways within the skin. J. Invest. Dermatol. 2014. 134(8): p. 2080-5


11 Ichihashi M. et al. UV-induced skin damage. Toxicology. 2003. 189(1-2): 21-39


12 Rinnerthaler M et al. Oxidative stress in aging human skin. Biomolecules. 2015. 5(2): 545-89


13 Bald T et al. Ultraviolet-radiation-induced inflammation promotes angiotropism & metastasis in melanoma. Nature. 2014. 507(7490): p. 109-13


14 Saito P et al. The lipid mediator resolvin D1 reduces the skin inflammation & oxidative stress induced by UV irradiation in hairless mice. Front. Pharmacol. 2018. 9: 1242


15 Scharffetter K et al. UVA irradiation induces collagenase in human dermal fibroblasts in vitro & in vivo. Arch. Dermatol. Res. 1991. 283(8): 506-11


16 Herrmann G et al. UVA irradiation stimulates the synthesis of various matrix- metalloproteinases in cultured human fibroblasts. Exp. Dermatol. 1993. 2: 92-97


17 Watson RE et al. Damage to skin extracellular matrix induced by UV exposure. Antioxid. Redox. Signal. 2014. 21(7): 1063-77


18 Brash DE et al. A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc. Natl. Acad. Sci. USA. 1991. 88(22): 10124-8


19 Schmitt J et al. Occupational UV exposure is a major risk factor for basal cell carcinoma: Results of the population-based case- control study FB-181. J. Occup. Environ. Med. 2018. 60(1): 36-43


25 Reinhard E et al. Colour transfer between images. IEEE Computer Graphics & Applications. 2001. 21(5): 34-41.


26 Wu F et al. Content-based colour transfer. Computer Graphics Forum. 2013. 32(1):190- 203.


27 Yoo J.-D et al. Local colour transfer between images using dominant colors. Journal of Electronic Imaging. 2013. 22(3): 033003


28 Khan A et al. Fast colour transfer from multiple images. arXiv:1612.08927v1 cs.CV, 2016


29 Liu S, Pei M. Texture-aware emotional colour transfer between images. IEEE Access. 2018. 6: 31375-31386.


30 Campiche R et al. Pigmentation effects of blue light irradiation on skin & how to protect against them. Int. J. Cosmet. Sci. 2020. 42: 399-406


31 Jackson et al. Discovery of a highly selective MC1R agonist pentapeptide to be used as a skin pigmentation enhancer & with potential anti-ageing properties. Int. J. Mol. Sci. 2019. 20(24): 6143


32 Seroul P. et al. An image-based mapping of significance & relevance of facial skin colour changes of females living in Thailand. Int. J. Cosmet. Sci. 2020. 42(1): 99-107


33 Chardon A, Cretois I, Hourseau C. Skin colour typology & suntanning pathways. Int. J. Cosmet. Sci. 1991. 13(4): 191-208


34 Dupont E, Gomez J, Bilodeau D. Beyond UV radiation: A skin under challenge. Int. J. Cosmet. Sci. 2013. 35: 224-232


35 D’Orazio J et al. UV radiation & the skin. Int. J. Mol. Sci. 2013. 14(6): 12222-48


36 Voegeli R et al. A novel continuous colour mapping approach for visualisation of facial skin hydration & transepidermal water loss for four ethnic groups. Int. J. Cosmet. Sci. 2015. 37(6): 595-605


37 Egawa M et al. Visualisation of water distribution in the facial epidermal layers of skin using high-sensitivity near-infrared imaging. Appl. Spectrosc. 2015. 69(4): 481-7


www.personalcaremagazine.com


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84