search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
MARINE INGREDIENTS


55


or changes to their natural phenotype (e.g., pigment concentration, EPS concentration, etc.).” The extraction phase applies a downstream process that does not use any toxic chemicals or organic solvents. Extreme measures are taken to not pollute nor exploit any natural resources from the environment. The whole extraction process uses a unique set of ultrafiltration units to take care of separating the EPS from the growth medium. Ultrafiltration is then used to reduce the product to the desired concentration. The start-up operates its unique “green”


factory within the historic mountains of the scenic Upper Galilee region of Israel which encloses an indoor system that can produce exceptional algae yields with proven reproducibility on a very small plot of land and using minimal resources. Its unique site runs on recycled water and minimal energy. The indoor and versatile system allows the


possibility for the plant to be built anywhere in the world in any type of environment. Within the system, the compartmentalisation allows growth of various algae simultaneously without worry of cross-contamination. Clinical trials on the EPS produced by Yemoja has been proven to be safe for atopic human usage. In addition, other trials have proven that Yemoja’s EPS is a strong anti-ageing and anti-inflammatory agent. Therefore, the market can be provided with the highest quality EPS all year round.


Conclusion Thanks to the extraordinarily large pool and variety of microalgae, amazing and new beneficial purposes are constantly being discovered. It is believed that the future of the cosmetic industry, the world of food nutrition, and potentially Pharma will find great yields by investing in microalgae. From the start, Yemoja has been and is open to working with all companies interested in growing the microalgae sector and to further the collective knowledge of microalgae. This will help pilot labs to grow faster and move from R&D to mass production with more efficiency and transparency.


PC www.personalcaremagazine.com


References 1 Kawaguchi K. 1980. :vIicroalgae Production Systems in Asia. In. Shelef, G., and C. J. Soeder, Eds, Algae Biomass: Production and Use. Elsevier/North-Holland Biomedical Press, Amsterdam, New York, Oxford


2 Ramus J, Groves ST. Incorporation Of Sulfate Into The Capsular Polysaccharide Of The Red Alga Porphyridium. The Journal of Cell Biology 1972;54: 399-407.


3 Arad S. Production of sulfated polysaccharides from red unicellular algae. Algal Biotechnology/ edited by T. Stadler et al.1988


4 Ramus J, Kenney B, Shaughnessy E. Drag reducing properties of microalgal exopolymers. Biotechnology and Bioengineering 1989; 33: 550-557.


5 Evans L, Callow ME, Percival E, Fareed V. Studies On The Synthesis And Composition Of Extracellular Mucilage In The Unicellular Red Alga Rhodella. Journal Of Cell Science 1974;16, 1-21.


6 Percival, E. & Foyle, R. 1979. The Extracellular Polysaccharides Of Porphyridium Cruentum And Porphyridium Aerugineum. Carbohydrate Research, 72, 165-176.


7 Geresh S, Arad S. The Extracellular Polysaccharides Of The Red Microalgae: Chemistry And Rheology. Bioresource Technology 1991; 38: 195-201.


8 Arad S, Kolani R, Simon-Berkovitch B, Sivan A. Inhibition By Dcb Of Cell Wall Polysaccharide Formation In The Red Microalga Porphyridium Sp.(Rhodophyta). Phycologia 1994 33; 158-162.


9 Capek P, Matulova M, Combourieu B. The Extracellular Proteoglycan Produced By Rhodella Grisea. International Journal Of Biological Macromolecules 2008; 43: 390-393.


10 Arad SM, Levy-Ontman O. Red Microalgal Cell-Wall Polysaccharides: Biotechnological Aspects. Current Opinion In Biotechnology 2010; 21: 358-364.


11 Tannin-Spitz T, Bergman M, Van-Moppes D, Grossman S, Arad SM. Antioxidant Activity Of The Polysaccharide Of The Red Microalga Porphyridium Sp. Journal Of Applied Phycology 2005; 17: 215-222.


12 Fujitani N, Sakari S, Yamagushi Y, Takenaka H.


Inhibitory Effects Of Microalgae On Activation Of Hyaluronidase. J. Appl. Phycol. 2001; 13: 489–492.


13 Matsui Ms, Muizzuddin N, Arad S, Marenus K. Sulfated Polysaccharides From Red Microalgae Have Antiinflammatory Properties In Vitro And In Vivo. Appl Biochem Biotechnol. 2003


14 Gardeva E, Toshkova R, Minkova K, Gigova L, Cancer Protective Action Of Polysaccharide, Derived From Red Microalga Porphyridium Cruentum: A Biological Background. Biotechnology & Biotechnological Equipment 2009; 23: 783–787.


15 Díaz A, et al. Effect Of Porphyridium Cruentum Polysaccharides On The Activity Of Murine Macrophage Cell Line Raw 264.7. Ciencias Marinas 2010; 36: 345-353.


16 Hasui M, Matsuda M, Okutani K, Shigeta S. In Vitro Antiviral Activities Of Sulfated Polysaccharides From A Marine Microalga (Cochlodinium Polykrikoides) Against Human Immunodeficiency Virus And Other Enveloped Viruses. International Journal Of Biological Macromolecules 1995; 17: 293-297.


17 Hayashi K, Hamada J, Hayashi T. A Screening Strategy For Selection Of Anti-Hsv-1 And Anti-Hiv Extracts From Algae. Phytotherapy Research 1996; 10: 233-237.


18 Huleihel M, Ishanu V, Tal J, Arad SM. Antiviral Effect Of Red Microalgal Polysaccharides On Herpes Simplex And Varicella Zoster Viruses. Journal Of Applied Phycology 2001; 13: 127-134.


19 Huleihel M, Isanu V. Anti-Herpes Simplex Virus Effect Of An Aqueous Extract Of Propolis. The Israel Medical Association Journal: Imaj 2002; 4: 923-927.


20 Talyshinsky MM, Souprun YY, Huleihel MM. Anti-Viral Activity Of Red Microalgal Polysaccharides Against Retroviruses. Cancer Cell International 2002; 2: 8.


21 Radonić A, Thulke S, Achenbach J, et al. Anionic Polysaccharides From Phototrophic Microorganisms Exhibit Antiviral Activities To Vaccinia Virus.


22 Raposo MFDJ, et al. 2013. Bioactivity And Applications Of Sulphated Polysaccharides From Marine Microalgae. Marine Drugs 2013; 11: 233-252.


April 2021 PERSONAL CARE


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90