search.noResults

search.searching

saml.title
dataCollection.invalidEmail
note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
LARGE LANGUAGE MODELS IGAMING’S NEXT MAJOR TECH DISRUPTOR


Witnessing a surge in pilot initiatives exploring the potential for Large Language Models to automate customer support, generate dynamic content and power internal knowledge systems, Denis Romanovskiy, Deputy CTO at SOFTSWISS, believes an imminent LLM wave is coming. Ahead of speaking at SBC Summit, Roman discusses the next tech breakthroughs, global scalability, and why a unified data core is an operator's secret weapon.


Denis, could you define what technical stability means for SOFTSWISS?


At SOFTSWISS, technical stability goes far beyond uptime statistics – it's the foundation that supports our clients' business success. We define it through three key pillars: consistent availability, high-performance response times, and operational resilience. Our goal is to ensure that platforms remain responsive and secure, even under unexpected spikes in traffic or external incidents. For example, our Game Aggregator consistently operates at “five nines” availability (99.999 per cent), which translates into near-zero downtime.


We also believe that real stability isn’t just about preventing failures – it’s about how fast and effectively you respond when something goes wrong. Tat’s why we prioritise strong monitoring, alerting systems, and fast incident-resolution processes.


How does your team balance delivering betting innovations without compromising uptime or technical robustness? We maintain this balance through a combination of smart architecture and process discipline. For instance, we use a


hybrid approach that blends modular monoliths and microservices, allowing us to move quickly with features without compromising critical components. New betting modules are developed and tested in isolated environments before rollout, and our CI/CD pipelines ensure thorough validation through automated testing at every stage.


By combining stable foundations with service-based scalability, we can deliver innovation confidently without risking uptime or the user experience.


With over 1,200 brands using SOFTSWISS solutions globally, how do you plan for geographically distributed scale from a tech perspective – particularly as you enter major new markets such as Brazil?


Scaling globally requires a nuanced approach, especially in regions with distinct infrastructure challenges such as Brazil, Africa, and Asia. We localise by deploying our core services as close to the player as possible.


To mitigate latency, we work with edge caches and local CDNs, so users are always routed to the closest point of presence. Our


159


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174