This page contains a Flash digital edition of a book.
news digest ♦ Telecoms


the Avago direct sales channel and via worldwide distribution partners.


Avago anchors integrated switch and GaAs LNAs for base stations


The TD-SCDMA and TD-LTE compact fully- matched products replace three discrete devices to save PCB space, whilst delivering superior noise figures, linearity and power handling performance.


Avago Technologies, a supplier of analogue interface components for communications, industrial and consumer applications, is releasing a series of high-power switch low-noise amplifier (LNA) modules dedicated for use in front-end receiver designs of TD-SCDMA and TD-LTE base transceiver station (BTS) applications.


The new small-footprint ALM-12x24 modules replace existing three-piece discrete solutions, providing significant board space savings that is especially critical for BTS designs with 8 transceiver channels in a single radio card.


transmit chain in conditions where the antenna is mismatched.


The LNA and high-linearity amplifier leverage the company’s proprietary 0.25 µm GaAs Enhancement-mode pHEMT process to achieve robust RF performance.


The wireless infrastructure industry must provide optimum coverage with the best signal quality in a crowded spectrum. Receiver sensitivity is the most critical requirement in a BTS receiver’s design, and LNA selection greatly affects the receiver’s performance. For front-end design architectures, low noise figure (NF) is a key design goal.


Another key design factor is linearity, which affects the receiver’s ability to distinguish between wanted and spurious signals that are closely spaced. Output third-order intercept (OIP3) is used to specify linearity. The ALM-12124 module covers 1880-2025 MHz with 0.80 dB NF and 36.4 dBm OIP3 typical performance at 1900 MHz in receiver mode, while ALM-12224 module covers 2300-2400 MHz with 0.99 dB NF and 38.5 dBm OIP3 typical performance at 2400 MHz in receiver mode.


With 50 dB isolation between the first and second stage amplifiers, the ALM-12x24 enables external addition of an attenuator or RF filter without affecting the overall module performance. It has a high power handling capability of 47.5 dBm, low distortion silicon PIN diode technology long with a reliable MSL2a rating and lead-free package.


The fully-matched solutions also shorten design cycle time by eliminating the need for tuning with external matching circuitry. The modules deliver best-in-class noise performance, high-gain and high linearity from a compact package.


The Avago ALM-12x24 LNA modules integrate a high-power 50W Single Pole, Double Throw (SPDT) switch, a first-stage LNA and a second-stage high- linearity amplifier in an 8-mm-by-8-mm package. Constructed with an Avago PIN diode, the SPDT switch prevents the LNA from damage by high- power signals potentially leaking over from the


86 www.compoundsemiconductor.net October 2011


The ALM-12x24 switch LNA modules ship in a 24-pin MCOB package. The ALM-12124 and ALM- 12224 modules are priced at $8.58 each in 10,000 piece quantities. Samples and production quantities are available now through the Avago direct sales channel and via worldwide distribution partners.


Mitsubishi Electric’s GaN HEMT raises the bar for PAE


With a record PAE rating of 67%, the amplifier is designed for C-band satellites and wireless communication systems.


Mitsubishi Electric has developed a GaN HEMT power amplifier for C-band satellites featuring


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200