This page contains a Flash digital edition of a book.
RF Electronics ♦ news digest


manufactured in a compact, 2 x 2 mm, 8-pin dual flat no-lead, restriction of hazardous substances compliant, surface mount technology package.


The device is the first in a series of high performance, low power LNAs targeting broadband wireless applications. Additional footprint compatible LNAs for the 100 – 700 MHz and 700 – 1500 MHz bands will be launched later this year.


Avago unveils two new GaAs LNAs for RF and microwave applications


The new LNA series debuting at IMS 2011 use Avago’s proprietary 0.25 µm gallium arsenide enhancement-mode pHEMT process to deliver low noise figures and high linearity.


Avago Technologies has expanded its high- performance portfolio of RF and microwave components for cellular infrastructure applications with two new series of low-noise amplifiers (LNAs).


The company unveiled the latest additions at the 2011 International Microwave Symposium. Featuring best-in-class noise performance and high linearity, the new MGA-63xP8 LNAs and ALM-11x36 fail-safe bypass LNA modules deliver improved receiver sensitivity for base transceiver stations (BTS) and tower mounted amplifiers (TMA) applications.


The MGA-63xP8 devices and ALM-11x36 modules expand the Avago market-leading LNA portfolio for BTS applications, which leverage the company’s proprietary 0.25 µm GaAs Enhancement-mode pHEMT process to deliver low noise figure and high linearity.


As opposed to a broadband approach, Avago offers series of LNAs with each device optimised for superior end performance at specific frequency operation ranges. Both new LNA series exemplify this philosophy. Reflecting the portfolio’s emphasis on integration, the ALM-11x36 modules can replace large discrete and surface-mount component counts in conventional designs, shortening design cycle time and providing board space savings.


“These two new LNA series, along with the other high-performance products we have introduced leading up to IMS 2011, demonstrate our commitment to extend our leading LNA portfolio for the wireless infrastructure market and raise the bar for noise figure and overall performance,” said James Wilson, senior director of marketing for wireless products at Avago. “We continue to work with our customers to develop highly-integrated solutions that streamline the design process and help them to keep up with continuously evolving cellular standards.”


In addition to LNAs, the broad range of solutions in the portfolio includes Film Bulk Acoustic Resonator (FBAR) filters, gain blocks, driver amplifiers, and WaferCap amplifiers and detectors, as well as modules that integrate multiple technologies.


The high-linearity MGA-63xP8 LNA series integrates active bias circuitry and a power down function, simplifying design by eliminating the need for external discrete components to perform the same functions. The series offers high-gain performance consistent across 700-2600 MHz, with the MGA-636P8 device operating from 450- 1500MHz, while the MGA-637P8 and MGA-638P8 operate from 1500-2500 MHz and 2500-4000 MHz, respectively.


The series thus supports all major cellular bands for GSM, CDMA and UMTS, as well as the next- generation LTE bands. The LNAs are housed in a common footprint miniature package measuring 2.0 by 2.0 by 0.75 mm. With a shared pin-out and layout of external matching network, the LNAs provide a common PCB layout for customers when used at different frequencies, therefore simplifying design. The performance and features of the series make them ideal to be used as second or third stage LNAs for cellular BTS radio cards, TMAs, combiners, repeaters and remote or digital radio heads.


The ALM-11x36 LNA modules are equipped with a fail-safe bypass function, which is especially critical for TMA applications to enable the LNA bidirectional bypass path during the absence of DC power supply. Their superior bypass isolation eliminates the possibility of oscillation issues, and the modules also feature low bypass insertion loss and high input and output return loss.


October 2011 www.compoundsemiconductor.net 115


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200