This page contains a Flash digital edition of a book.
Solar ♦ news digest


maturity towards industrial production; flexible CIGS technology is, however, still an emerging field. The recent improvements in efficiency in research labs and pilot plants – among others by Tiwari’s group, first at ETH Zurich and since a couple of years now at Empa – are contributing to performance improvements and to overcoming manufacturability barriers.


Caption: Flexible thin film CIGS solar cell on polymer substrate developed at Empa (Copyright: Empa)


It’s all about the money. To make solar electricity affordable on a large scale, scientists and engineers worldwide have long been trying to develop a low-cost solar cell, which is both highly efficient and easy to manufacture with high throughput. Now a team at Empa’s Laboratory for Thin Film and Photovoltaics, led by Ayodhya N. Tiwari, has made a major step forward. “The new record value for flexible CIGS solar cells of 18.7% nearly closes the “efficiency gap” to solar cells based on polycrystalline silicon (Si) wafers or CIGS thin film cells on glass”, says Tiwari. He is convinced that “flexible and lightweight CIGS solar cells with efficiencies comparable to the “best-in-class” will have excellent potential to bring about a paradigm shift and to enable low-cost solar electricity in the near future.”


One major advantage of flexible high-performance CIGS solar cells is the potential to lower manufacturing costs through roll-to-roll processing while at the same time offering a much higher efficiency than the ones currently on the market. What’s more, such lightweight and flexible solar modules offer additional cost benefits in terms of transportation, installation, structural frames for the modules etc., i.e. they significantly reduce the so- called “balance of system” costs. Taken together, the new CIGS polymer cells exhibit numerous advantages for applications such as facades, solar farms and portable electronics. With high- performance devices now within reach, the new results suggest that monolithically-interconnected flexible CIGS solar modules with efficiencies above 16% should be achievable with the recently developed processes and concepts.


At the forefront of efficiency improvements


In recent years, thin film photovoltaic technology based on glass substrates has gained sufficient


Improvement in energy conversion efficiency of flexible CIGS solar cells on polymer film.


Working closely with scientists at FLISOM, a start- up company who is scaling up and commercializing the technology, the Empa team made significant progress in low-temperature growth of CIGS layers yielding flexible CIGS cells that are ever more efficient, up from a record value of 14.1% in 2005 to the new “high score” of 18.7% for any type of flexible solar cell grown on polymer or metal foil. The latest improvements in cell efficiency were made possible through a reduction in recombination losses by improving the structural properties of the CIGS layer and the proprietary low-temperature deposition process for growing the layers as well as in situ doping with Na during the final stage. With these results, polymer films have for the first time proven to be superior to metal foils as a carrier substrate for achieving highest efficiency.


Record efficiencies of up to 17.5% on steel foils covered with impurity diffusion barriers were so far achieved with CIGS growth processes at temperatures exceeding 550°C. However, when applied to steel foil without any diffusion barrier, the proprietary low temperature CIGS deposition process developed by Empa and FLISOM for polymer films easily matched the performance achieved with high-temperature procedure, resulting in an efficiency of 17.7%. The results suggest that commonly used barrier coatings for detrimental impurities on metal foils would not be required. “Our results clearly show the advantages of the low- temperature CIGS deposition process for achieving


October 2011 www.compoundsemiconductor.net 161


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200