This page contains a Flash digital edition of a book.
news  review


Avancis raises thin-film PV module record


AVANCIS, a manufacturer of CIS solar modules, has presented a new world record in efficiency for thin-film modules at the EU PVSEC. The company has achieved a new world record of 15.8 percent on a 30 cm x 30 cm CIS solar module.


Avancis has improved its last efficiency record of 15.5 percent from the beginning of the year in time for the recent EU PVSEC and takes the lead in the efficiency ranking list of externally certified thin-film modules.


The new aperture efficiency degree of 15.8 percent on the fully-encapsulated and framed Champion module has been confirmed by TÜV Rhineland in an advance announcement.


According to the current efficiency record table of the magazine Prog. Photovolt. 19 (2011) 565 from August of this year, the Avancis result represents a new, independently certified efficiency record for a thin-film photovoltaic module with a size of 30 cm x 30 cm.


RABOUTET S.A.


Manufacturer of Molybdenum. Components for MBE. Specialized Cleaning & Degassing available.


“The renewed efficiency improvement can be traced back to the reduction of the layer thickness of the CIGSSe absorber by approximately 10 percent and an optimised in-line selenization process for the thinner absorbers.


In addition, the P1 laser structuring was optimised and the structuring process between P1, P2 and P3 improved with the aim of further enlarging the active surface. The result was the achievement of an aperture efficiency of 15.8 percent”, Franz Karg, CTO of Avancis, explains the most recent success.


Important for the future application of the new technology, is that the efficiency improvement was not achieved at the expense of impaired long-term stability. The research and development department has carried out climate tests (so-called damp heat tests in accordance with the valid IEC storms) with several of the efficiency-optimised modules. All tests demonstrated long-term stability comparable with that of the previous products.


Lowest power downconverters


NXP SEMICONDUCTORS has introduced the TFF101xHN, a family of integrated downconverters for use in Low Noise Block (LNB) 10.7-GHz to 12.75-GHz Ku band satellite receiver systems. Designed for downlink signal reception for TV satellite dishes, NXP’s new family of DVB-S compliant downconverters are claimed to consume 50-percent less current (52 mA) than other integrated solutions, significantly increasing the lifetime of the LNB and improving its reliability.


The new downconverters are the most recent additions to NXP’s portfolio for satellite LNB, including other discrete products such as oscillators, amplifiers and switches, to provide complete coverage for all LNB architectures.


The TFF101xHN family offers simplicity and integration in a leadless 16-pin package with a conversion gain ranging from 37 dB to 45 dB. They also offer integrated phase noise of 1.5 degrees RMS and a low noise figure of 7 dB. This high level of integration guarantees the stability of the local oscillator (LO), which improves overall system reliability by eliminating LO drift over lifetime due to temperature changes.


RABOUTET S.A.


250 Av Louis Armand Z.I Des Grand Prés F-74300 Cluses France Tél : 33 (0)4 50 98 15 18 Fax : 33 (0)4 50 98 92 57 E-mail : info@raboutet.fr http://www.raboutet.fr


12 www.compoundsemiconductor.net October 2011


For satellite LNB makers, assembly is also made easy due to the high integration level of functionality and minimum requirement for external components. The TFF101xHN family comes in four fully RF-tested versions with pre-set LO frequencies, which significantly reduces the need for manual adjustments on the production line, speeding up the manufacturing process and time to market, as well as lowering operating costs.


The Low Noise Block downconverter is the device at the front of a parabolic satellite dish antenna that receives the very low level microwave signal from the satellite, amplifies the signal and converts it to a lower frequency band


in order to send it down the cable to the indoor receiver. The Ku band is primarily used for satellite communications, particularly for editing and broadcasting satellite television.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200