This page contains a Flash digital edition of a book.
power electronics  industry


MicroGaN takes nitride transistors into the third dimension


Purchasers of power electronics want transistors and diodes that deliver SiC performance at silicon prices. Next year they should get their wish when MicroGaN launches a range of 600 V, GaN-on-silicon devices. Richard Stevenson investigates.


I


nterest in energy efficiency continues to rise. This is evident in the values for the power consumption of electrical goods that are no longer tucked away in the small print of the owner manuals – now they displayed along with the item for sale, and considered to be an important consideration for every potential customer.


Heightened interest in the energy efficiency of electrical products by individuals and corporations is partly behind increasing sales in the multi-billion dollar power electronics market. Silicon dominates this arena, with ten or so firms taking the lion’s share of this market that provides electronic components for various products, including switch mode power supplies used in PCs, solar invertors and the power electronics in hybrid electric vehicles. However, these multi-million dollar chipmakers are facing ever stiffer competition from wide-bandgap semiconductors.


Leading this charge are SiC diode and transistor manufacturers such as Cree, Infineon and SemiSouth. In terms of efficiency, their products outperform those made from silicon by a significant margin. However, high costs hamper sales, with customers having to pay, for example, around $90 for a 1200 V SiC MOSFET from Cree.


Fortunately, there is another promising option: GaN-on- silicon. “We promise SiC performance for the price of silicon,” claims Ertugrul Sönmez, business development manager at the German GaN-on-silicon start-up MicroGaN, which is a spin-off of the University of Ulm.


ˇ


According to him, the pairing of silicon and GaN also has the potential to deliver of high levels of integration, because it can accommodate several power devices, including power diodes and switches, on a single chip.


Strength in numbers


MicroGaN, which is currently sampling 600 V diodes and transistors, is not alone in pioneering power electronics with this class of material: International Rectifier is shipping 30V/12A modules, EPC is selling normally off transistors with voltages ranging from 40 V to 200 V, and a handful of other firms dotted around the globe are developing similar products.


Such competition, especially from industry heavyweights, could alarm many a small start-up. Sönmez, however, offers a completely different take on the situation: “If you have a new materials system, it needs to be convincing to application engineers. They


October 2011 www.compoundsemiconductor.net 15


MicroGaN die are fabricated from


GaN-on-silicon epiwafers


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200