This page contains a Flash digital edition of a book.
industry  power electronics


Utilizing a common approach MicroGaN has a common platform for forming three different types of


device: a 600 V diode and normally off and normally on transistors operating at the same voltage.


The normally on transistor has the simplest construction – it’s just a GaN HEMT with a source, drain and gate. But this class of device is unlikely to be a big seller because in many applications concerns over safety lead to the requirement for a normally off transistor.


Great performance is of little benefit in the commercial arena if manufacturing costs are high. This is certainly not the case, according to Sönmez, who claims that the cost of making these normally off GaN-on-silicon switches is lower than that for manufacturing sophisticated silicon products. “Our processing complexity is very low – lower than sophisticated silicon, such as coolMOS, and far lower than SiC transistors that might have trenches or other technological steps to ensure normally off operation.”


He admits that the costs for epitaxy are higher than those for silicon, but points out that this can be offset by resistance figures up to ten times lower. “You end up with a really competitive cost structure even to silicon.”


Initially, MicroGaN’s products will probably be used as drop-in replacements for those made from SiC and silicon. Employed in that way, circuits don’t have to be re-designed, making it relatively easy to displace SiC free-wheeling and boost diodes that are used in boost stages of power factor correction units, and in H-bridge circuits that are used to control the current flow in solar applications and motor drives.


The architecture for the diode is more complex, combining a GaN HEMT with a silicon Schottky barrier diode. “Silicon’s low-voltage diode properties, which are fantastic at low voltages, are transferred to 600 V,” enthuses Sönmez.


He explains that it’s a similar story for the normally off transistor, which pairs a GaN HEMT with a MOSFET in a cascode configuration. “The advantage then is that you don’t need a free-wheeling diode,” explains Sönmez, who adds that the MOSFET that is used is of very high quality and features a low-voltage barrier diode.


According to him, silicon MOSFETs perform poorly at high voltages due to high levels of stored charge. “But you don’t have this problem for silicon MOSFETs at low voltages – they are incredible.” So, just like the diode, this approach allows the strengths of silicon to be translated to high voltages.


That’s not the only advantage of this approach, though, says Sönmez: “If you want to make an AlGaN/GaN system operate normally off, you have to destroy the nature of the two-dimensional gas at the location of the gate.” By sidestepping that issue, MicroGaN can produce devices that excel in a key figure of merit – the on-resistance, multiplied by the area of the device.


Further inroads into the power electronics market require a re-design of the H-bridge circuit Currently, these circuits require four separate silicon IGBTs and additional free-wheeling diodes. To begin with, MicroGaN’s transistors could replace the IGBTs and eliminate the need for diodes. But further down the road the changes could be far more radical: “I can see a fully integrated power conversion technology that can be made on one chip and will, for the first time, facilitate today’s three-dimensional technology advantages,” says Sönmez.


Over the next few months MicroGaN will be preparing its technology for its initial sampling phase with selected customers that is planned for the first quarter of 2012. Mass production will follow as the Ulm start-up establishes manufacturing partners.


“Our process has been developed from the beginning to be transferable,” explains Sönmez. This allows the company to not just outsource epitaxy, but the entire production process, a move that the company is preparing to make. “This will start using 4-inch, using its maturity at 600 V. But we are tracking 6-inch in parallel, and as soon as the electrical properties fulfil our needs - in terms of yield, homogeneity, breakdown voltage, leakage current, and so on – we will switch.” If the company can make these transitions smoothly, it should to be a major force in the power device market.


© 2011 Angel Business Communications. Permission required.


18 www.compoundsemiconductor.net October 2011


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200