This page contains a Flash digital edition of a book.
news digest ♦ Lasers as interference.


A photodiode monitors the slight increase in light transmission through the caesium vapour cell when the microwave oscillator is tuned to resonance. According to the international definition of the second (since 1967) the clock indicates that one second has elapsed after counting exactly 4,596,315,885 cycles (nearly 4.6 gigacycles) of the microwave oscillator signal.


Because magnetism has an influence on caesium atoms, they are shielded from Earth’s magnetic field by two layers of steel sheathing.


While this sounds cumbersome, atomic clocks are simpler to maintain than timepieces of a century ago, when a pendulum clock in Paris was the source of the world’s exact time. Kept in a room that was temperature- and humidity-controlled, not only would a change of one degree affect the pendulum’s swing, but the difficulty of bringing accurate time to the U.S. was extreme: one synchronised a portable clock in Paris and then had to transport it across the ocean by ship, during which time the mechanical clock would inevitably drift from the time of the Paris clock.


Sandia is developing a follow-on technology for DARPA: a trapped-ion-based clock. It will improve timing accuracy at similar size, weight and power to the CSAC. Researchers are currently working on the first compact prototype.


Oclaro incomes bomb in latest quarter


The firm has reported operating losses of $6.2 million and net losses of $9.4 million for its latest quarter ended 2 April 2011.


Oclaro, a provider of innovative optical communications and laser solutions, has announced the financial results for its third quarter of fiscal year 2011, which ended April 2, 2011.


“Oclaro has continued to invest in its new product pipeline while certain telecom customers have experienced a short-term inventory correction,” said Alain Couder, president and CEO of Oclaro.


“We expect the slowdown to continue through our upcoming fiscal fourth quarter. Our planned new products are expected to provide revenue growth and gross margin traction in the second half of the calendar year. We also remain confident in the second half because of the continued strong demand for broadband in the core optical market, and the increasing reliance on optical functionality throughout the network.”


Revenues for Q3 FY 2011 were $116.6 million for the third quarter of fiscal 2011, compared to $120.3 million in the second quarter of fiscal 2011. GAAP gross margin was 25% for the third quarter of fiscal 2011, compared to 30% in the second quarter of fiscal 2011.


GAAP operating loss was $6.2 million for the third quarter of fiscal 2011, compared to GAAP operating income of $1.6 million in the second quarter of fiscal 2011.


Adjusted EBITDA was $1.1 million for the third quarter of fiscal 2011, compared to $10.1 million in the second quarter of fiscal 2011. GAAP net loss for the third quarter of fiscal 2011 was $9.4 million, compared to net loss of $0.2 million in the second quarter of fiscal 2011.


Cash, cash equivalents and restricted cash were $75.7 million as of April 2, 2011 compared to $78.1 million as of January 2, 2011.


For the fourth quarter of fiscal 2011, which ends July 2, 2011, Oclaro expects revenues in the range of $105 million to $115 million and adjusted EBITDA in the range of negative $6.5 million to negative


146 www.compoundsemiconductor.net October 2011


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200