This page contains a Flash digital edition of a book.
news digest ♦ Novel Devices


The combination of increased current in an atomic-sized probe by Caesium-correction and the increase in X-ray detection sensitivity and beam current of the ChemiSTEM Technology allows results to be obtained within minutes.


microscopes (S/TEMs) compared to conventional technology employing standard EDX Silicon-drift detectors (SDDs) and standard Schottky-FEG electron sources.


The images show atomic-level EDX spectroscopy of the material Strontium Titanate; the individual atomic positions of the crystal structure can be easily distinguished by their chemical signal (red is Strontium, green is Titanium).


“The powerful combination of the groundbreaking ChemiSTEM Technology and an aberration corrector offers unique capabilities for material science,” said Ferdinand Hofer of Graz University of Technology, Austria. “One of the most important applications for the new technology will be element-specific imaging at atomic resolution. We will apply the technology to study interfaces in semiconductors, solar cell materials, LEDs and ceramic materials with previously unknown detection sensitivity and accuracy.


George Scholes, FEI’s vice president for product management, adds, “The ChemiSTEM Technology will enable breakthough results in many key application areas for our customers, such as catalysis, metallurgy, microelectronics, and green energy materials, to name a few. For example, in a recent experiment with ChemiSTEM Technology, our customer was able to clearly resolve the core- shell structure of 5nm catalyst nanoparticles in about three minutes and with three times greater pixel resolution than a previous experiment with conventional technology. And the conventional technology failed after three hours of data collection to clearly resolve the same structure.”


ChemiSTEM Technology achieves a factor of 50 or more enhancement in speed of EDX elemental mapping on scanning/transmission electron


198 www.compoundsemiconductor.net October 2011


It combines FEI’s proprietary X-FEG high brightness electron source, providing up to five times more beam current at a given spatial resolution; the patent-pending Super-X detection system, providing up to ten times or more detection sensitivity in EDX; and fast scanning electronics, capable of achieving EDX spectral rates of up to 100,000 spectra per second. Additionally, the windowless detector design employed for each of ChemiSTEM Technology’s four integrated SDD detectors has proven to optimize the detection of both light and heavy elements.


This combination of high detection sensitivity and high spectral rates of up to 100,000 spectra per second are enabling better EDX mapping of materials that are highly sensitive to electron beam damage, such as composition analysis in nanometre-scale InGaN quantum wells used in LED devices, and semiconductor devices with potentially mobile dopant materials, as well as many others devices used in emerging nanotechnologies.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200