This page contains a Flash digital edition of a book.
news digest ♦ Power Electronics


Amps (typ.) and an efficiency of 29 %. The new product comes in a 77-AA07A package and is targeted to Satcom applications including very small aperture terminals (VSAT).


“The expansion of Toshiba’s GaN power amplifier family brings higher gain and very efficient features to microwave designers, which reduce heat sink requirements and enable smaller terminals and converters with a full GaN HEMT line-up that includes drivers,” said Homayoun Ghani, business development manager, Microwave, Logic, and Small Signal Devices, TAEC Discrete Business Unit.


“Since Toshiba released its 50W Ku-band product a few years ago, many customers have requested a full line-up of GaN HEMTs, which will simplify the power supply design of Solid-State Power Amplifiers (SSPA) and block up converters (BUC). In addition, small output power applications, such as VSAT, can benefit from GaN HEMTs, making fan-less or very small equipment possible,” he concluded.


In 2009, Toshiba announced the addition of the Extended Ku-band TGI1314-50L to its GaN power amplifier family, which operates in the 13.75GHz to 14.5GHz range for Satcom to support SSPA applications. The TGI1314-50L is now in mass production.


Samples of the TGI1314-25L will be available in the third quarter 2011, with mass production scheduled for the fourth quarter 2011.


Fujitsu develops world’s first GaN HEMT T/R C-Ku band module


The firm’s latest gallium nitride creation enables consolidation of communications equipment into one compact module.


Fujitsu Laboratories has successfully developed what it claims is the world’s first transmitter/receiver (T/R) module using GaN HEMT technology.


It features an output of 10 W and operates in a wide bandwidth range of C-band, X-band, and Ku-band


178 www.compoundsemiconductor.net October 2011 (C-Ku band) radio frequencies over 6-18 GHz.


By combining the world’s best performing GaN power amplifier (PA) developed last year with the newly developed GaN low-noise amplifier (LNA), the researchers achieved a compact T/R module that generates a high-output.


This technology makes possible the integration of multiple types of communications equipment—each currently operated at a different frequency range— into a single module, making for the development of smaller, lighter radar equipment and wireless communication systems.


GaN is used as a blue-LED in traffic signal lights, and compared to the conventional semiconductor materials of silicon and GaAs, it features a high saturation carrier velocity and relative resistance to the breakdown caused by voltage. Given these characteristics, GaN HEMTs show promise for high- output and exceptionally efficient operations.


In line with the advance of a network-based society, radio wave demand in a variety of wireless systems is expected to increase even further. For example, aircraft radar typically switches between the C-band, which can detect distant objects and works well in rain, and the X- and Ku-bands which are able to measure physical objects with high- precision.


Currently, this demand for multiple frequency ranges requires different communications equipment each suited to their respective frequency band. However, a single T/R module capable of covering the entire C-Ku band range would meet a variety of needs, allowing systems to become more compact.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200