This page contains a Flash digital edition of a book.
Power Electronics ♦ news digest


president and CEO of SPTS. “Providing production knowledge to this collaboration and helping to develop and deliver new materials processing technology is an important business strategy. This JDA further enhances the portfolio of offerings to our served markets and will help to broaden our customer base.”


Mitsubishi Electric’s GaN HEMT raises the bar for PAE


With a record PAE rating of 67%, the amplifier is designed for C-band satellites and wireless communication systems.


Mitsubishi Electric has developed a GaN HEMT power amplifier for C-band satellites featuring what it claims is the world’s highest power-added efficiency (PAE) rating, 67%.


This is an increase of more than seven points compared to conventional amplifiers. The amplifier is expected to lead to smaller and lighter transmitter devices to help microwave communication satellites save power.


The device has power-saving features to help make satellites more efficient and reliable.


The new amplifier’s record PAE of 67% is enabled by the world’s first harmonic tuning circuit placed in front of each GaN HEMT cell on the substrate. The PAE was improved by second harmonic impedance of GaN HEMT with highly accurate input control. The harmonic tuning circuit comprises a MIM capacitor and a spiral inductor.


The module has a high output power of 107W (50.3dBm) and is 17.4 x 24.0 x 4.3 mm weighing just 7.1g. It is an internally impedance- matched GaN HEMT amplifier.


As more satellites complete their operational lifespan, the demand is increasing for new microwave communication satellites with smaller, lighter and more efficient satellite transponders. Conventional transponder devices use travelling wave tube amplifiers (TWTAs) because solid- state power amplifiers with GaAs HEMTs, which lack sufficient output power and efficiency, require an additional amplifier to gain high output power.


GaN is a promising material for next-generation power devices with a performance beyond what is possible with silicon. Imec has recently succeeded in producing 200mm GaN-on-Si wafers with crack- free surfaces and a bow of less than 50µm.


The wafers were made using an advanced MOCVD system from Applied Materials. The ability to use


October 2011 www.compoundsemiconductor.net 183


More efficient GaN HEMT amplifiers with high output power, high-field electron velocity and high- breakdown fields are expected to replace TWTAs in communication satellites.


Going forward, Mitsubishi Electric intends to further enhance the efficiency and power performance of GaN HEMT amplifiers for satellites and wireless communication systems.


Imec processes first power devices on 200mm GaN-on-Si


The wafers were made using an advanced MOCVD system from Applied Materials and the devices were processed using standard CMOS tools.


Imec and its partners in the GaN industrial affiliation program (IIAP) have produced device-quality wafers with GaN/AlGaN layers on 200mm silicon wafers.


With these wafers, functional GaN MISHEMTs were processed using standard CMOS tools. The used processes are compatible with the strict contamination rules in a standard CMOS processing line (e.g. no use of gold). These first GaN devices on 200mm wafers are an important milestone on the path to cost-effective production of power devices in high-productivity 200mm fabs.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200