This page contains a Flash digital edition of a book.
microelectronics  GaN


Europe improves reliability of GaN microwave devices for space applications


Guaranteed access to leading edge GaN component technology is essential to maintain a competitive space industry in Europe. So companies and institutions are working together to build their own reliable, non-dependant,manufacturing supply chain for fabrication of space compatible GaN microwave transistors and integrated circuits, says Andrew Barnes and Fabio Vitobello from the European Space Agency and Joachim Daeubler, Klaus Hirche, Jouni Laetti and Mirko Rostewitz from Tesat-Spacecom.


G


aN is the most promising semiconductor since silicon. Its attributes enable it to


create bigger, brighter TVs, and better performing mobile phones and wireless base stations. And its potential is not just limited to terrestrial applications – in fact, it actually holds particular appeal for the space sector. In this environment, devices made from GaN promise to deliver reliable operation at far higher voltages and temperatures than current equivalents built from silicon and GaAs, and initial results indicate that this wide bandgap variant is also far better at withstanding the high levels of radiation found in space.


The attractions of deploying GaN in space have spurred development of microwave devices designed for that environment. Benefits of switching from the incumbents to this wide bandgap semiconductor include a major improvement in radiation hardness, a five-to-ten-fold increase in RF power output and the opportunity to reduce the mass and size of cooling systems.


If high reliability GaN microwave devices are produced, they could be widely deployed in space because microwave signals form the backbone of space communications, thanks to their suitability for carrying broadband data that can pass through the Earth’s atmosphere. In addition, the microwave region of the electromagnetic spectrum can also be used to transmit spacecraft telemetry data back to Earth and deliver vision to radar imaging missions, such as Europe’s Envisat.


Commercial production of GaN power transistors has been spearheaded by the US firm Cree and the Japanese chipmaker Eudyna (now part of Sumitomo Electric Device Innovations Inc.), who both commercially introduced devices on to the market about five years’ ago. However, evaluating these overseas devices’ performance and scrutinizing their reliability data is not always easy for any organization outside the borders of the manufacturer, due to International Traffic in Arms Regulations (ITAR) controls and restrictive end-user licence agreements on these components.


When microwave products from Eudyna and Cree were unveiled, the primary developers of GaN microwave components within Europe were research institutes and universities. Funding for these programmes came through


October 2011 www.compoundsemiconductor.net 31


Figure 1: The project partners within GREAT2


foundries, research


institutions and universities


include


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200