This page contains a Flash digital edition of a book.
Supplementary Information


relatively evenly during the year (Kjerfve 1990; Blasco 1984; Snedaker 1984). Notable exceptions are the northern coast of Peru, portions of the Caribbean coasts of Colombia and Venezuela, the coast of Ceará in Brazil and most of the smaller islands in the Caribbean, where the most extensive and best developed mangrove systems are in regions with ample freshwater. Rainfall by itself apparently does not limit the growth of mangrove wetlands, as these exist in arid as well as wet climates (Galloway 1982). However, rainfall does serve an important role as a primary control in leaching residual salts from mangrove soils, and thus acts to reduce soil salinity. In arid areas or regions with a strongly seasonal rainfall pattern, a barren salt flat often develops as a rim landward of the mangroves. (Kjerfve 1990). Other factors being equal, coasts with a great tidal range can be expected to have more extensive mangrove wetlands because of a greater potential for tidal flooding. Such conditions are encountered along the humid Pacific coast of Colombia with spring tides reaching 3.9 metres, and also along the humid coasts of northern Brazil where semidiurnal spring tides exceed 7 metres. On the other hand, in the inner part of Baja California, Mexico, where the climate is arid, mangroves are poorly developed in spite of daily tides with a range of more than 7 metres. In contrast, all of the Gulf of Mexico and the Caribbean Sea is microtidal, sometimes diurnal and sometimes mixed, with a range of less than 0.5 metres (Kjerfve 1981). Here, the tide is of little consequence in terms of affecting mangrove distribution.


With the flow of water to the mangroves comes a steady supply of nutrients from the surrounding land. The organic silts and sediments settle and, warmed by the sun, provide ideal conditions for the growth of microscopic plants and animals, the base of aquatic food chains. The abundance of food materials leads to some mangroves being one of the most productive systems on Earth. The contribution of plant material to regulate climate and water source is one reason to consider and protect mangroves since the movement of water from the Earth to the sea to the air and back to the Earth is fundamental in the water cycle. Evaporation occurs with higher temperatures, where mangroves ecosystems are located. On one side, mangroves can absorb the water


through their leaves or roots through groundwater, and they also lose water vapour through their leaves into the atmosphere. As the water vapour in the atmosphere increases, clouds are formed and eventually water droplets form causing rain events to occur in other areas, this means that evaporated water, after being condensed, falls into rivers and streams and eventually into the ocean where the water cycle begins again.


There is growing concern about the state of mangroves in LAC.


In several countries, mangroves are being cut and replaced by other biological or engineered structures, such as large scale mariculture (shrimp farming) in Ecuador, Brazil and Central America, tourism in Mexico, Central America and South Eastern Brazil, and harbours and industrial complexes almost everywhere (Lugo 2002; Lacerda et al. 1993, MMA- Brazil 2010). According to a recent GEF Project report “Conservaçao e uso sustentável efetivo de ecossistemas manguezais no Brasil” (ICMBio e IBAMA, 2014) Brazil still has 1 398 966 hectares of mangroves, 76% of them inside reserves.


22. Water quality in beaches in touristic destinations


Marine water pollution can have negative effects on coastal ecosystems and on human health. Regarding the latter, the most common problems are related to bathing in contaminated waters, which lead to gastrointestinal illness, skin rush and eye and ear infections.


In Mexico, marine water quality standards are established by a series of official norms. Among different parameters, pathogens, particularly faecal coliforms and enterococci (commonly associated with municipal wastewater), are analyzed given their capacity to generate infectious diseases (Larrea-Murrell et al. 2013; James 1979 in Wong and Barrera 1996).


195


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180  |  Page 181  |  Page 182  |  Page 183  |  Page 184  |  Page 185  |  Page 186  |  Page 187  |  Page 188  |  Page 189  |  Page 190  |  Page 191  |  Page 192  |  Page 193  |  Page 194  |  Page 195  |  Page 196  |  Page 197  |  Page 198  |  Page 199  |  Page 200  |  Page 201  |  Page 202  |  Page 203  |  Page 204  |  Page 205  |  Page 206  |  Page 207  |  Page 208  |  Page 209  |  Page 210  |  Page 211  |  Page 212  |  Page 213  |  Page 214  |  Page 215  |  Page 216  |  Page 217  |  Page 218  |  Page 219  |  Page 220  |  Page 221  |  Page 222  |  Page 223  |  Page 224  |  Page 225  |  Page 226  |  Page 227  |  Page 228  |  Page 229  |  Page 230  |  Page 231  |  Page 232  |  Page 233  |  Page 234  |  Page 235  |  Page 236  |  Page 237  |  Page 238  |  Page 239  |  Page 240  |  Page 241  |  Page 242  |  Page 243  |  Page 244  |  Page 245  |  Page 246  |  Page 247  |  Page 248  |  Page 249  |  Page 250  |  Page 251  |  Page 252  |  Page 253  |  Page 254  |  Page 255  |  Page 256  |  Page 257  |  Page 258  |  Page 259  |  Page 260  |  Page 261  |  Page 262  |  Page 263  |  Page 264