search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
XEOL and EPMA–CL for On-Line and On-Site Analysis of Inclusions in Steel 1147


Figure 4. a: Cathodoluminescence (CL) image of the model sample and (b) photograph of the model sample before bombard- ment with electrons using the portable CL spectrometer.


observed. It was proposed from the result of XEOL analysis on the same model sample that the particles producing green and blue luminescence were MgAl2O4 spinel and Al2O3, respectively. The number of particles producing green luminescence was larger than that of particles producing blue luminescence for the same reason as we discussed in the XEOL analysis. The illuminated area in Figure 4a corresponded to the particles observed in Figure 4b, although all the particles did not produce luminescent colors. This is because the beam current of the portable CL spectrometer, which is dozens of nanoamperes, was not sufficient for particles with smaller size to produce visible luminescent colors. These particles could be detected by increasing the beam current for the same reason as we dis- cussed in the XEOL analysis. We could obtain a larger beam current by optimizing the parameters of the portable CL spectrometer such as the heating temperature of the LiTaO3 crystal, its cooling rate, the distance between the crystal and the model sample, and the pressure inside the sample cham- ber. The number of particles that produced luminescent colors was, however, larger than that in the XEOL image. This is consistent with studies that show that a laboratory-scale CL spectrometer can produce as much luminescent intensity as a synchrotron X-ray beam (Dalby et al., 2010; Lobacheva et al., 2012). This result indicates that the portable CL spectrometer is more suitable for on-site analysis of nonmetallic inclusions in steel than an XEOL analyzer. We subsequently carried out elemental analysis of the


particles that produced luminescent colors using the portable EPMA. Figures 5a, 5b show EDX spectra obtained by bombardment with an electron beam in the vicinity of the particles producing blue (particle 1 in Fig. 4a) and green


Figure 5. Energy-dispersive X-ray spectra obtained by bombard- ment with electron beam in the vicinity of the particles producing (a) blue (particle 1 in Fig. 4a) and (b) green (particle 2 in Fig. 4a) lumi- nescence using the portable electron probe microanalyzer (EPMA).


(particle 2 in Fig. 4a), respectively. Cu L, Si K, and Cu K lines were detected in both spectra. The Si K line was attributed to the insulating materials coated on the Pt0.8Ir0.2 wire and the needle holder (Imashuku & Wagatsuma, 2017). The char- acteristic X-rays of copper (Cu L and Cu K) originated from copper in the model sample. In addition to the Cu L, Si K, and Cu K lines, only the Al K line was detected by electron beam bombardment near the particle producing blue lumi- nescence, while both Mg K and Al K lines were detected by electron beam bombardment near the particles producing green luminescence. These results support our observation in the XEOL analysis that the particles producing green and blue luminescence were MgAl2O4 spinel and Al2O3, respec- tively. The intensity of the Al K line in the Al2O3 particle producing blue luminescence (Fig. 5a) was ~10 times higher than that in the MgAl2O4 particle (Fig. 5b). This might be because the Al2O3 particle was larger than the MgAl2O4 particle or the electron beam was irradiated off-center of the MgAl2O4 particle.Nevertheless, these results suggest that the portable EPMA can distinguish MgAl2O4 spinel and Al2O3 particles with sizes of more than 20 μm. Portability is the key advantage of the portable EPMA–


CL analyzer over the conventional analysis such as EPMA and spark-induced atomic emission spectrometry, although the quantitative accuracy of the portable EPMA–CL analyzer is less than that of the conventional analysis. Thus, the portable EPMA–CL analyzer has potential in on-site analysis for screening nonmetallic inclusions in defective steel products before the conventional analysis. In addition, the portable EPMA–CL analyzer does not require knowledge of


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180