search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
1098 Etienne Brodu and Emmanuel Bouzy


Figure 2. a: Side view of the Si lamella being excavated by focused ion beam. The solid green line indicates the position- ing of the twin boundary, which is tilted by 8° relative to the surface of the lamella. b: Direct view of the twin boundary with backscattered electrons (BSD detector) in the same area, before excavation. The arrows indicate details on the surface that were used to track the position of the twin boundary. c: Same view as (b) but with secondary electrons (InLens detector); the boundary is no more visible, hence the need for details on the surface used as landmarks.


leaving two traces (one on each side of the wafer) that looked vertically aligned. Inside this selected area, a FIB lamella was then extracted in a way to induce a low angle between the twin boundary and the surface of the lamella. This angle could simply be controlled by rotating the milling frame relative to the boundary on the surface of the wafer in the FIB, as seen in Figure 2. In the meantime, the twin boundary is assumed to be roughly perpendicular to the observation plane in Figure 2 (bear in mind that Fig. 2 presents a side view of the lamella being excavated). During the excavation, the angle of the twin boundarywith the surface of the lamella was thus perfectly known, and was purposely set to 8°. The next steps consisted in the typical lift-out, transfer to a grid and thinning of the lamella. During these final preparation steps, the exact positioning of the twin boundary in the lamella was lost, especially during the thinning step. How- ever, the angle of the twin boundary with the surface of the lamella remained largely unchanged. Besides, as it is detailed in the Methodology for the Determination of the Depth Resolution section, the position of the twin boundary could be determined by diffraction later on. The last step consisted in applying a low energy cleaning at 5 keV, 240pA for 60 s on each side in order to remove as much as possible the amor- phous layer induced by the milling at 30 keV. With such final polishing, we estimate that there is about 5 nmof amorphous Si on each side of the lamella according to Tee (Tee et al., 2009). Because this layer is likely thin, but also because we have no way to measure its thickness, it is neglected for the remainder of the study. (Note that the thicker the amorphous layer, the more underestimated, i.e. shorter, the depth resolution would be with the present methodology.) At this point, the thickness of the lamella was largely unknown, but seemed to range from under 100nm up to


Figure 3. Scheme of the Si lamella produced by FIB and used for the determination of the depth resolution in on-axis transmission Kikuchi diffraction (TKD). SEM, scanning electron microscope.


220nm according to side views, with a thickness gradient


across the lamella (Fig. 3). This thickness variation, although first unintended, was then purposely not corrected by addi- tional milling. This way, it became possible to study the dependence of the depth resolution with the sample thick- ness. For this, the local thickness of the lamella at the point of measurement of the depth resolution is determined accord- ing to the methodology described in the next section.


Methodology for the Determination of the Depth Resolution Every time the text refers to the depth resolution, we are using the following definition: we define the depth resolution in TKD as the minimal thickness of material at the bottom of the sample such that the material above does not produce a contribution to the Kikuchi diffraction pattern that can be detected, in the general case by analysis software, but in the


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180