search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Microsc. Microanal. 23, 1076–1081, 2017 doi:10.1017/S1431927617012594


© MICROSCOPY SOCIETY OF AMERICA 2017


Micron-Scale Deformation: A Coupled In Situ Study of Strain Bursts and Acoustic Emission


Ádám István Hegyi,1 Péter Dusán Ispánovity,1,* Michal Knapek,2 Dániel Tüzes,1 Kristián Máthis,2 František Chmelík,2 Zoltán Dankházi,1 Gábor Varga,1 and István Groma1


1Department of Materials Physics, Eötvös Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary 2Faculty of Mathematics and Physics, Department of Physics of Materials, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic


Abstract: Plastic deformation of micron-scale crystalline materials differs considerably from bulk samples as it is characterized by stochastic strain bursts. To obtain a detailed picture of the intermittent deformation phenomena, numerous micron-sized specimens must be fabricated and tested. An improved focused ion beam fabrication method is proposed to prepare non-tapered micropillars with excellent control over their shape. Moreover, the fabrication time is less compared with other methods. The in situ compression device developed in our laboratory allows high-accuracy sample positioning and force/displacement measurements with high data sampling rates. The collective avalanche-like motion of the dislocations is observed as stress decreases on the stress–strain curves. An acoustic emission (AE) technique was employed for the first time to study the deformation behavior of micropillars. The AE technique provides important additional in situ information about the underlying processes during plastic deformation and is especially sensitive to the collective avalanche-like motion of the dislocations observed as the stress decreases on the deformation curves.


Key words: micropillar compression, in situ deformation, acoustic emission, microsample fabrication INTRODUCTION


In the past decades, the miniaturization of mechanical and electronic devices has inspired research to determine the mechanical properties of micron-sized specimens (Volkert& Lilleodden, 2006; Ng & Ngan, 2008; Zaiser et al., 2008; Kraft et al., 2010; Zhou et al., 2011). Many microelectromechanical devices (e.g., micromachined inertial sensors or cantilever transducer platforms for chemical and biological sensors) contain micrometer-sized components (Yazdi et al., 1998; Lavrik et al., 2004). To design progressively smaller devices, the detailed physical events underlying the deformation processes in the microparts must be understood. Plastic deformation of crystalline materials typically


occurs by the collective motion of dislocation ensembles. The stress–strain response of macroscopic samples is generally smooth and reproducible due to the large number of moving dislocations, thus allowing highly accurate predictions of the material properties. In contrast, at micrometer scales, the inhomogeneities in the dislocation structure can be on the order of the sample size, leading to a discontinuous response due to the stochastic activation of dislocation avalanches (Miguel et al., 2002; Weiss & Marsan, 2003; Zaiser et al., 2004; Zaiser & Moretti, 2005; Zapperi, 2012). Therefore, a statistical approach must be employed to assess the mechanical behavior of materials at this scale. The initial evidence of intermittent crystal plasticity was observed in single ice crystals by detecting strong acoustic


*Corresponding author. ispanovity@metal.elte.hu Received October 21, 2016; accepted August 29, 2017


emission (AE) signals during creep deformation (Weiss et al., 2000; Miguel et al., 2001). A decade ago, Dimiduk et al. found that instabilities in the form of strain jumps dominate micrometer-scale crystal plasticity by compressing pure single-crystalline Ni micropillars (Uchic et al., 2004; Dimiduk et al., 2006; Uchic et al., 2009), raising the questions (i) where is the limit between microscopic and macroscopic deformation, and (ii) how can material strength parameters, such as yield point or ultimate compressive/tensile strength, be defined for micron-scale objects (Arzt, 1998; Greer & De Hosson, 2011; Ispanovity et al., 2013). Due to their statistical nature, revealing the properties of


microdeformation requires numerous samples to be tested. One of the most typical and frequently applied methods for fabricating microsamples (micropillars) is focused ion beam (FIB)milling (Reyntjens & Puers, 2001). The main advantage of this method is the ability to continuously visually control the fabrication process. Moreover, there is practically no limitation on thematerials fromwhich the micropillars can be milled. Conversely, FIB-based methods are rather time consuming. To shorten the fabrication time of micropillars, several different (FIB-less) methods are being developed (Burek & Greer, 2009; Jennings et al., 2010). Unfortunately, FIB-less methods typically do not allow the production of pillars from any type of material. Furthermore, the initial dislocation density of the samples can be difficult to control, or the connecting force between the substrate and the grown micropillars can be rather weak (Moser et al., 2012). Two approaches are commonly applied to fabricate micropillars by FIB milling: “lathe” and “annular” milling


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180