search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Microsc. Microanal. 23, 1207–1213, 2017 doi:10.1017/S1431927617012661


MICROGRAPHIA © MICROSCOPY SOCIETY OF AMERICA 2017


The Application of Scanning Electron Microscopy with Energy-Dispersive X-Ray Spectroscopy (SEM-EDX) in Ancient Dental Calculus for the Reconstruction of Human Habits


Dana Fialová,1,* Radim Skoupý,2 Eva Drozdová,1 Aleš Paták,2 Jakub Piňos,2 Lukᚊín,3 Radoslav Beňuš,4 and Bohuslav Klíma5


1Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic 2Institute of Scientific Instruments of the CAS, Královopolská 147, 612 64 Brno, Czech Republic 3Archaeological Centre Olomouc, U Hradiska 6, 779 00 Olomouc, Czech Republic 4Department of Anthropology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava 4,


Slovak Republic 5Department of History, Faculty of Education, Masaryk University, Poříčí 9, 603 00 Brno, Czech Republic


Abstract: The great potential of scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX) is in detection of unusual chemical elements included in ancient human dental calculus to verify hypotheses about life and burial habits of historic populations and individuals. Elemental spectra were performed from archeological samples of three chosen individuals from different time periods. The unusual presence of magnesium, aluminum, and silicon in the first sample could confirmthe hypothesis of high degree of dental abrasion caused by particles from grinding stones in flour. In the second sample, presence of copper could confirm that bronze jewelery could lie near the buried body. The elemental composition of the third sample with the presence of lead and copper confirms the origin of individual to NapoleonicWars because the damage to his teeth could be explained by the systematic utilization of the teeth for the opening of paper cartridges (a charge with a dose of gunpowder and a bullet),whichwere used during the 18th and the 19th centuryAD.All these results contribute to the reconstruction of life (first and third individual) and burial (second individual) habits of historic populations and individuals.


Key words: ancient dental calculus, SEM-EDX, human habits, the Great Moravian Empire, Napoleonic Wars INTRODUCTION


tified as a reservoir of various fragments of cereals, vegetable fibers, phytoliths, pollens, seeds, animal hairs, parasites, insects, microfossils, bacteria, fungi, other biomolecules and elements. Several different types of microscopes were used to examine ancient human dental calculus. Polarizing light microscopes were used for identification of microfossils such as phytoliths or starch grains, which are important in revealing the human diet (Boyadjian et al., 2007; Piperno & Henry, 2008; Hardy et al., 2009, 2012). Transmission electron microscopy (TEM) brought information about bacterial components, crystals (Kakei et al., 2009) and also proof that “reactive” bacterial ancient DNA (aDNA) exists in 4,000–5,000 years old human dental calculus (Preus et al., 2011). Scanning electron microscopy (SEM) gave a lot of information about human diet (Arensburg, 1996;


Ancient human dental calculus is a very important bio-archeological material because it is formed from dental plaque during the life of an individual. Thus, it has been iden-


*Corresponding author.danafialka@mail.muni.cz Received February 14, 2017; accepted October 18, 2017


Fox et al., 1996; Hardy et al., 2012; Power et al., 2014), oral bacterial flora(Vandermeerschetal.,1994; Papetal.,1995; Linossier et al., 1996; Hershkovitz et al., 1997), environmental conditions (Fox et al., 1996), and the habits of historic popu- lations and individuals (Blatt et al., 2011; Hardy et al., 2012). Energy-dispersive X-ray spectroscopy (EDX) was used


in connection with TEM and brought information about the inorganic elemental composition of the calculus of recent ethnic groups. Differences between two ethnic groups were shown mainly in the levels of sodium and magnesium and in relation to smoking (Roberts-Harry et al., 2000). The inorganic and crystallographic composition of recent calculus has been known for many years (Gron et al., 1967; Sundberg & Friskopp, 1985). The main elements in dental calculus are calcium, phosphorus, magnesium, fluoride, carbon dioxide and they mainly come from hydroxyapatite, whitlockite, octacalciumphosphate, and brushite (Gron et al., 1967).Other special elements are supposed to come from other sources dependent on diet, habits, environment, ethnic groups, etc. SEM-EDX was also used in connection with SEM to


focus on microfossils and starch in ancient dental calculus (Dudgeon & Tromp, 2014; Power et al., 2014). Only the


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180