search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Microsc. Microanal. 23, 1189–1196, 2017 doi:10.1017/S1431927617012715


© MICROSCOPY SOCIETY OF AMERICA 2017


Nucleation and Growth of Mg-Calcite Spherulites Induced by the Bacterium Curvibacter lanceolatus Strain HJ-1


Chonghong Zhang, Jiejie Lv, Fuchun Li,* and Xuelin Li College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China


Abstract: Calcite spherulites have been observed in many laboratory experiments with different bacteria, and spherulitic growth has received much interest in mineralogy research. However, the nucleation and growth mechanism, as well as geological significance of calcite spherulites in solution with bacteria is still unclear. Herein, spherulites composed of an amorphous core, a Mg-calcite body and an organic film were precipitated by the Curvibacter lanceolatus HJ-1 bacterial strain in a solution with a molar Mg/Ca ratio of 3. Based on the results, we provide a possible mechanism for the biomineralization of Mg-calcite spherulites. First, amorphous calcium carbonate particles are deposited and aggregated into a stable sphere-like core in combination with organic molecules. The core then acts as the nucleus of spherulitic radial growth. Finally, the organic film grows on the surface of Mg-calcite spherulites as a result of bacterial metabolism and calcification. These findings provide insight into the growth mode and crystallization of biogenic spherulites during biomineralization, and are of significance in the application of novel biological materials.


Key words: bacteria, Mg-calcite, ACC, spherulite, growth


INTRODUCTION Carbonate precipitation, and particularly calcite biominer- alization has been studied widely in recent decades (Ercole et al., 2007; Yoshimura et al., 2017). Some bacteria from various natural habitats are able to precipitate calcite under both natural and laboratory conditions (Benzerara et al., 2006; Sánchez-Navas et al., 2009; Lors et al., 2017). Microbial metabolism can lead to an increase in pH and CO3


2− content


in solution. Calcite nucleation frequently takes place on cell walls due to ion exchange through the cell membrane (Castanier et al., 2000) and/or due to promotion by negatively charged cell wall functional groups that adsorb Ca2+ ions (Rivadeneyra et al., 1998). In addition, extracellular polymeric substance (EPS) can trap Ca2+ ions and serve as a nucleation template or growth modifier (Braissant et al., 2003; Lian et al., 2006). However, the precise roles of bacteria in the process of calcite crystallization remain largely elusive. Calcite crystals grown in the presence of bacteria or biomolecules express excellent mechanical properties, biocompatibility, and biodegradability, and their geochemistry and application to various industrial fields have received considerable attention (Le Metayer-Levrel et al., 1999; Rodriguez-Navarro et al., 2003; Yang et al., 2010; Della Porta, 2015; Declet et al., 2016).


dependent on various strictly defined parameters, such as crystal size, particle composition, polymorphism, and mor- phology (Kitamura, 2001; Kontrec et al., 2013). In most cases, particle morphology is regarded as one of the most


The physicochemical properties of calcite crystals are


*Corresponding author. fchli@njau.edu.cn Received August 17, 2017; accepted October 31, 2017


important parameters. Biogenic calcite grown under laboratory conditions in the presence of additives or foreign ions (such as Mg2+ or Ba2+) display a wide variety of morphologies, and can have dumbbell-like (Wright & Wacey, 2005), star-like (Zhu et al., 2006), spindle-like (Xue et al., 2011), or spherulitic structures (Ercole et al., 2007). These biogenic calcite monocrystals and polycrystals appear to include extensive local disorder, and differ in their crys- tallographic parameters and mineral growth orientation due to ion substitution and the involvement of organic molecules (Bischoff et al., 1983; Li et al., 2017). Such particles have been widely studied owing to their significance in biomineraliza- tion processes and their ability to produce nanoscale or micron-sized organic/inorganic materials with unique morphologies. Among them, the spherulitic precipitate is the most common. Biogenic calcite spherulites are found in association with many biomolecules, and have been linked to several human diseases. Indeed, many scientists consider particles with this spherulitic morphology as biomarkers (Khan, 1997; Magill, 2001; Mercedes-Martín et al., 2016). The nucleation and growth of calcite spherulites is


closely associated with the ambient microenvironment, such as the activities and types of bacteria present, alkalinity, ion species, additives, and impurities (Beck & Andreassen, 2010a). The influence of various factors on the precipita- tion of calcite spherulites has been investigated by many authors (Zhang et al., 2015; Xu et al., 2017), and spherulitic precipitation appears to be extremely complex since virtually any parameter may trigger morphological change. Despite nearly a century of research on the growth features of such crystals (Goldenfeld, 1987; Gránásy et al., 2005; Beck & Andreassen 2010a, 2010b), the formation of spherulites


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180