Nucleation and Growth of Mg-Calcite Spherulites 1195
subunits. During the formation and maturation of Mg- calcite spherulites, more and more HJ-1 bacteria adhere on the surface of spherulites, forming colonies that become calcified (inset in Fig. 9). Conversely, bacterial death during the latter stages and the formation of the organic film retards the crystallization of ACC, and inhibits the further growth of Mg-calcite spherulites.
CONCLUSION
We observed numerous Mg-calcite spherulites in our bac- terial mineralization experiments that consisted of radial Mg-calcite crystals and stable ACC aggregates mixed with organic matter. We suggest a spherulitic growth mode as follows: crystallization begins when bacterial cells or EPS sequesters and concentrates Ca2+ and Mg2+ ions. Subse- quently, increasing numbers of ACC particles are deposited and aggregate into a stable sphere-like core in combination with organic matter. The stable core then acts as the nucleus
of spherulitic growth. Finally, the film constituted by calci- fied bacteria, EPS, and ACC grows on the surface of spher- ulites. Although the crystallization of spherulitic biominerals is clearly complex, and depends on the surrounding envir- onment, our findings provide new insight into morphologi- cal formation, and are relevant to many fields including geology, biology, and materials science.
ACKNOWLEDGMENTS
This work was supported by the National Natural Science Foundation of China (grant No: 41673083, 41172308, and 40573057), the Open Project of the State Key Laboratory of Loess and Quaternary Geology (grant No: SKLLQG1309).
REFERENCES
ADDADI, L., RAZ,S.&WEINER, S. (2003). Taking advantage of disorder: Amorphous calcium carbonate and its roles in biomineralization. Adv Mater 15, 959–970.
AIZENBERG, J., WEINER,S. & ADDADI, L. (2003). Coexistence of amorphous and crystalline calcium carbonate in skeletal tissues. Connect Tissue Res 44,20–25.
BECK,R.&ANDREASSEN, J.P. (2010a). The onset of spherulitic growth in crystallization of calcium carbonate. J Cryst Growth 312, 2226–2238.
BECK,R.&ANDREASSEN, J.P. (2010b). Spherulitic growth of calcium carbonate. Cryst Growth Des 10, 2934–2947.
BENIASH,E., AIZENBERG,J., ADDADI,L.&WEINER, S. (1997). Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc R Soc Lond B Biol Sci 264, 461–465.
BENZERARA, K., MENGUY, N., LOPEZ-GARCIA, P., YOON, T.H., KAZMIERCZAK, J., TYLISZCZAK, T., GUYOT,F.&BROWN, G.E. Jr. (2006). Nanoscale detection of organic signatures in carbonate microbialites. Proc Natl Acad Sci 103, 9440–9445.
BISCHOFF, W.D., BISHOP, F.C. &MACKENZIE, F.T. (1983). Biogenically produced magnesian calcite: inhomogeneities in chemical and physical properties; comparison with synthetic phases. Am Mineral 68, 1183–1188.
BLANCO-AMEIJEIRAS,S., LEBRATO,M., STOLL, H.M., IGLESIAS-RODRIHUEZ, M.D., MENDEZ-VICENTE, A., SETT, S., MULLER, M.N., OSCHLIES,A. &SCHULZ, K.G. (2012). Removal of organic magnesium in coccolithophore calcite. Geochim Cosmochim Acta 89, 226–239.
BRAISSANT, O., CAILLEAU, G., DUPRAZ,C.&VERRECCHIA, E.P. (2003). Bacterially induced mineralization of calcium carbonate in terrestrial environments: The role of exopolysaccharides and amino acids. J Sediment Res 73, 485–490.
CANTAERT, B., VERCH, A., KIM, Y.Y., LUDWIG, H., PAUNOV, V.N., KROGER,R.&MEIDRUM, F.C. (2013). Formation and structure of calcium carbonate thin films and nanofibers precipitated in the presence of poly (allylamine hydrochloride) and magnesium ions. Chem Mater 25, 4994–5003.
CASTANIER, S., LE METAYER-LEVREL,G. & PERTHUISOT, J.P. (2000). Bacterial roles in the precipitation of carbonate minerals. In Microbial Sediments (pp. 32–39. Berlin/Heidelberg: Springer.
CHEN, T., NEVILLE,A.&YUAN, M. (2006). Influence of Mg2+ on CaCO3 formation—Bulk precipitation and surface deposition. Chem Eng Sci 61, 5318–5327.
DECLET, A., REYES,E.&SUÁREZ, O.M. (2016). Calcium carbonate precipitation: A review of the carbonate crystallization process and applications in bioinspired composites. Rev Adv Mater Sci 44,87–107.
DELLA PORTA, G. (2015). Carbonate Build-Ups in Lacustrine, Hydrothermal and Fluvial Settings: Comparing Depositional Geometry, Fabric Types and Geochemical Signature. London: Geological Society, Special Publications 418, 17–68.
ERCOLE, C., CACCHIO, P., BOTTA, A.L., CENTI,V. & LEPIDI, A. (2007). Bacterially induced mineralization of calcium carbonate: The role of exopolysaccharides a capsular polysaccharides. Microsc Microanal 13,42–50.
GOLDENFELD, N. (1987). Theory of spherulitic crystallization. J Cryst Growth 84, 601–608.
GRÁNÁSY, L., PUSZTAI, T., TEGZE, G., WARREN, J.A. & DOUGLAS, J.F. (2005). Growth and form of spherulites. Phys Rev E 72, 011605.
JAYARAMAN, A., SUBRAMANYAM, G., SINDHU, S., AJIKUMAR, P.K. & VALIYAVEETTIL, S. (2007). Biomimetic synthesis of calcium carbonate thin films using hydroxylated poly (methylmethacrylate) (PMMA) template. Cryst Growth Des 7,142–146.
KHAN, S.R. (1997). Calcium phosphate/calcium oxalate crystal association in urinary stones: Implications for heterogeneous nucleation of calcium oxalate. J Urol 157, 376–383.
KITAMURA, M. (2001). Crystallization and transformation mechanism of calcium carbonate polymorphs and the effect of magnesium ion. J Colloid Interf Sci 236, 318–327.
KONTREC, J., UKRAINCZYK, M., DŽAKULA, B.N. & KRALJ, D. (2013). Precipitation and characterization of hollow calcite nanoparticles. Cryst Res Technol 48, 622–626.
LE METAYER-LEVREL, G., CASTANIER, S., ORIAL, G., LOUBIEREC, J.-F. & PERTHUISOTA, J.-P. (1999). Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment Geol 126,25–34.
LI, T., HAO, L., DU,C. &WANG, Y. (2017). Synthesis of magnesium- doped calcium carbonate microcapsules through yeast-regulated mineralization. Mater Lett 193,38–41.
LI, L., LI, F., LIU, L., ZHANG,C.&LV, J. (2017). Aragonite formation induced by strain HJ-1 in low Mg/Ca condition. Acta Microbiol Sin 57, 434–446. (in Chinese).
LIAN, B., HU, Q., CHEN, J., JI,J. & TENG, H.H. (2006). Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochim Cosmochim Acta 70, 5522–5535.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180