search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
SEM-EDX in Ancient Human Dental Calculus 1211


Figure 8. The sample of the dental calculus from Majetín (No. 801). Bar=500 μm. a: SEM image. b: EDX lead map from the rectangular highlighted in (a). The arrow shows the sample. c: EDX carbon map.


Figure 9. LEEM (landing energy 250 eV) image of dental calculus from Majetín (No. 801). Bar=500 nm.


contributes to our hypothesis too. The reason is that sulfur is a compound of gunpowder and lead is used in the manu- facture of bullets. The EDX spectrum was obtained from the burial ground, and it was confirmed that no lead or sulfur were present in it. Thus, these elements could not come from the burial environment Figure 7. The iron seems to be burial contamination (Figs. 6 and 7). To evaluate our results, using EDX on a nonmodified


dental calculus sample, we performed the EDX mapping on a sample embedded in an epoxy block, thereby the EDX results mentioned above were confirmed (Figs. 8a, 8b). The EDX mapping gave us extra information about sulfur/lead depositing during the calculus formation. Figures 8a and 8b show the equal distribution of sulfur/lead. Thus, the hypothesis arises that the soldier was using his teeth for opening paper cartridges during all the time the dental cal- culus was formed. The dental calculus could be from 2 weeks to several years old (Mutschelknauss, 2002). It is in agree- ment with significant traces of the trauma of all the incisors.


In areas of lower concentration of lead/sulfur, higher amount of carbon is recognizable (Fig. 8c); these can be places of accumulation of organic material (bacteria, fibers, etc.). Before the coating (for the EDX mapping), the sample was analyzed by LEEM to display a detailed texture (Müllerová& Lenc, 1992) of the calculus (Fig. 9) in high magnification with landing energy 250 eV. Figure 9 suggests that the grain size of dental calculus crystals could be in the range of nanometers, which is similar to vascular calcified plaques (Curtze et al., 2016) where the EDX mapping was done with different techniques, including EBSD analysis. In this article (Curtze et al., 2016), the grain size in bone appears larger than in vascular calcified plaque, as well as fossil coralline skeletons (Cusacks et al., 2008) or fossil eggs (Grellet-Tinner et al., 2011) or shells (Pérez-Huerta & Cusacks, 2009).


CONCLUSIONS


Three samples of ancient human dental calculus from chosen individuals were studied in this study in order to verify hypotheses of life and burial habits by using SEM-EDX. Elemental spectra (Fig. 4) of the first sample (from the man dated to the 9th century AD) showed an unusual presence of magnesium, aluminum, and silicon, which contributes to confirmation of the hypothesis of a high degree of dental abrasion caused by particles from grinding stones in flour. Elemental spectra (Fig. 5) of the second sample (from the man from the 9th century AD with no goods according to archeological records but with green coloring of teeth) showed copper in dental calculus. This confirms the hypothesis that bronze jewelery could have lain near the buried body. Elemental spectra (Fig. 6) of the third sample (fromthe man without any grave goods fromMajetín) showed the presence of lead, iron, and copper. This confirms that damage to the teeth was caused by the systematic


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180