search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Depth resolution in on-axis TKD 1103


Figure 7. Zoom in the patterns 1, 5, and 9 from Figure 4. Many spots produced by double diffraction are visible in the pattern 5. These spots are the product of the diffraction, in the bottom crystal, of the diffracted waves produced by the top crystal. They are only visible between point 2 and 8 in Figure 4.


Figure 8. Illustration of the bias introduced by the beam broadening at low incident energy in the evaluation of the depth resolution. The electron trajectories were produced by CASINO (Drouin et al., 2007).


depth resolution by up to 50% at 10 keV, while it should be negligible at 30 keV. The model above is convenient because it uses the same


formalism (i.e., cross sections and mean free paths) as the well spread Monte Carlo simulations of electron trajectories in materials. Alternatively, one can use the formalism that Yamamoto (1977) used to account for the depth resolution of electron channeling patterns, which involves the complex lattice potential for electron diffraction. The complex lattice potential represents inelastic scattering (plasmon, phonon, and single electron excitation altogether) and is introduced to the crystal lattice potential in order to account for the damping of the diffracted wave along its travel. From the mean complex lattice potential V0


ficient µ0 can be calculated. For Si, µ0=V0 i /54=0.012nm−1


i , a mean absorption coef-


at 100 keV and room temperature (Reimer, 1997: 309). In the nonrelativistic regime, which is a more valid approximation in SEM than in TEM, this mean absorption coefficient µ0 is


inversely proportional to the energy (Hashimoto, 1964), which means that the depth resolution of Kikuchi diffraction in Figure 5 can be expressed approximately by 2.6/µ0.It might be possible to use this simple relationship to rapidly evaluate the depth resolution for any Z and E, because µ0 is a function of these two parameters (as well as of the tem- perature, because of the phonon scattering). For example, for Ge, µ0=0.026nm−1 at 100 keV and room temperature (Reimer, 1997: 309). Thus the depth resolution for Ge at 30 keV would be 2.6× 30/100/0.026=30nm and 2.6 ×10/ 100/0.026=10nm at 10 keV. It would be very interesting to validate this relationship between the mean absorption coefficient and the depth resolution of on-axis TKD for other atomic numbers. A first study by Sneddon et al. (2017) with conventional TKD confirms that the depth resolution presents a strong dependence with atomic number. Very interestingly, they report a depth resolution of 80, 33, and 13nm for Al, Cu, and Pt, respectively. From this result, it


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180