search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Depth resolution in on-axis TKD 1097


Bhattacharyya & Eades, 2009) and (2) the use of a low inci- dent energy also reduces the penetration depth and improves the depth resolution (Ren et al., 1998). If the existence of a depth resolution, or selectivity, was


obvious for EBSD because electrons penetrate a bulk mate- rial only for a given depth anyway, the depth resolution in transmission with TKD was less obvious because electron– matter interactions occur across the whole thickness. Suzuki (2013) produced a first solid proof: an orientation map produced by TKD on a lamella matching the EBSD map obtained from the back face of the same lamella. More evi- dence of selectivity can be found in Trimby et al. (2014), where it is highlighted that many grains displayed in orien- tation maps are much smaller than the thickness of the lamella. Then, Rice et al. (2014) showed with amorphous layers that the scattering of prime importance for the for- mation of Kikuchi patterns occurs near the back surface. Although the depth resolution of the TKD technique was observed, it has not yet been quantified, and the mechanisms involved are not clearly identified. Therefore, this study


intends to quantify the depth resolution of the on-axis con- figuration of the TKD technique for the first time on cubic silicon, determine its dependence with incident energy and sample thickness, and propose a physical model. Because the depth resolution probably depends on the beam-sample- detector geometry, the depth resolution of the classical TKD configuration (i.e., with a detector vertical like for EBSD) might be different (and better), as outlined by Trimby et al. (2014).


EXPERIMENTAL


On-Axis TKD Set-Up This study was performed with a field emission gun SEM Zeiss Supra 40 (Zeiss, Oberkochen, Germany) equipped with an on-axis TKD system that consists of a Bruker e-Flash1000 (Bruker) camera mounted on a Bruker OPTIMUSTM (Bruker, Billerica, MA, USA) detector head. The specificity of this detector head is that the scintillator is set horizontally instead of vertically like in the conventional TKD system


(Fig. 1). This on-axis detector was first designed, built and tested at LEM3 (Fundenberger et al., 2016) and is now commercialized by Bruker under the name OPTIMUSTM. With this on-axis configuration, the sample is set perpendi- cular to the electron beam, with the horizontal scintillator set underneath it in order to collect the electrons transmitted through the sample. The on-axis TKD in SEM is thus similar to the orientation mapping from Kikuchi diffraction devel- oped for TEM (Fundenberger et al., 2003; Morawiec et al., 2014). The diffraction patterns formed on the scintillator are then captured by the CCD camera, which remains vertical in the camera block, via a mirror inclined at 45°. The main advantage of this configuration is that the scintillator is positioned in the direction of maximum signal intensity, enabling a very high acquisition speed (Yuan et al., 2017), while the lateral resolution is expected to be at least as good as conventional TKD (Brodu et al., 2017). With on-axis TKD, the distance between the detector and the sample is adjustable, typically in the range 5–30mm, which allows adjustment of the range of solid angle observed in reciprocal space. This distance is adjusted by tilting the full camera block. The consequence is that the scintillator does not remain exactly perpendicular to the electron beam, although it remains in the range 90°±2° degrees for a detector-sample distance in the range 5–30mm. The acquisition parameters are listed in the caption for each figure showing diffraction patterns.


Sample Design and Preparation


A focused ion beam (FIB) lamella was specifically designed and fabricated for the determination of the depth resolution in on-axis TKD. This lamella is composed of two twinned cubic silicon crystals, whose twin boundary makes a low angle relative to the surface. The point with such a lamella is that the in-depth position of the twin boundary inside the lamella is known for all locations, because the twin boundary is a straight plane. For the preparation of the lamella, a Si wafer presenting multiple twins was selected. Then, an area of the wafer containing a roughly perpendicular twin boundary relative to the surface was identified. The perpen- dicularity was simply evaluated from the twin boundary


Figure 1. On-axis transmission Kikuchi diffraction (TKD) configuration (left) and comparison with conventional TKD (middle) and electron backscatter diffraction (EBSD) (right) in scanning electron microscope (SEM). Note that the chamber holds two EBSD cameras simultaneously, each on its own port, one for EBSD and conventional TKD, the other one being dedicated to on-axis TKD.


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180