Selectively Electron-Transparent Microstamping 1095
GITHENS,A.&DALY, S. (2017). Patterning corrosion-susceptible metallic alloys for digital image correlation in a scanning electron microscope. Strain 53, e12215–n/a.
GUPTA, V.K.,WILLARD, S.A.,HOCHHALTER, J.D. & SMITH, S.W. (2014). Microstructure-scale in-situ image correlation-based study of grain deformation and crack tip displacements in Al–Cu alloys. Mater Perf Character 4, 228–253.
JIANG, J., ZHANG, T., DUNNE, F.P.E. & BRITTON, T.B. (2016). Deformation compatibility in a single crystalline Ni superalloy. Proc R Soc A Math Phys Eng Sci 472,1–24.
KAMMERS, A.D. & DALY, S. (2011). Small-scale patterning methods for digital image correlation under scanning electron microscopy. Measur Sci Technol 22, 125501.
LECOMPTE, D., SMITS, A., BOSSUYT, S., SOL, H., VANTOMME, J., HEMELRIJCK, D.V. & HABRAKEN, A. (2006). Quality assessment of speckle patterns for digital image correlation. Opt Lasers Eng 44, 1132–1145.
LIM,H., CARROLL,J.D., BATTAILE, C.C., BOYCE,B.L.&WEINBERGER,C.R. (2015). Quantitative comparison between experimental measurements and CP-FEM predictions of plastic deformation in a tantalum oligocrystal. Int J Mech Sci 92,98–108.
LIM, H., SUBEDI, S., FULLWOOD, D., ADAMS,B.&WAGONER,R. (2014). A practical meso-scale polycrystal model to predict dislocation densities and the Hall-Petch effect. Mater Trans 55, 35–38.
MELLO, A.W., NICOLAS, A., LEBENSOHN, R.A. & SANGID, M.D. (2016). Effect of microstructure on strain localization in a 7050 aluminum alloy: comparison of experiments and modeling for various textures. Mater Sci Eng A 661, 187–197.
ODOM, T.W., THALLADI, V.R., LOVE, J.C. &WHITESIDES, G.M. (2002). Generation of 30–50 nm structures using easily fabricated, composite PDMS masks. J Am Chem Soc 124, 12112–12113.
RUGGLES,T., CLUFF,S.,MILES,M., FULLWOOD,D., DANIELS,C., AVILA,A. &CHEN, M. (2016a). Ductility of advanced high-strength steel in the presence of a sheared edge. JOM68, 1839–1849.
RUGGLES,T., FULLWOOD,D. & KYSAR, J. (2016b). Resolving geometrically necessary dislocation density onto individual dislocation types using EBSD-based continuum dislocation microscopy. Int J Plasticity 76,231–243.
WILKINSON, A.J.,MEADEN,G.&DINGLEY, D.J. (2006). High resolution mapping of strains and rotations using electron back scatter diffraction. Mater Sci Technol 22,1–11.
YAN, D., TASAN, C.C. & RAABE, D. (2015). High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels. Acta Mater 96, 399–409.
ZHANG,T.,COLLINS,D.M.,DUNNE,F.P.&SHOLLOCK, B.A. (2014).Crystal plasticity and high-resolution electron backscatter diffraction analysis of full-field polycrystal Ni superalloy strains and rotations under thermal loading. Acta Mater 80,25–38.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180