1162 Guillaume Wille et al. The use of a high-vacuum SEM at low voltage enabled
good-quality SE images. However, low voltage conditions are not well adapted for performing backscattered electron (BSE) images, and most of all, energy dispersive X-ray spectrometry (EDS) analysis on noncoated samples. Thus, a Peltier stage (up to −50°C) was used in a VP-FE-SEM (Tescan Mira3XMU, Brno, Czech Republic). The samples were first frozen in a nitrogen slush at −210°C, then transferred to the cooled stage under low-vacuum conditions. Water was kept under solid state by using low-vacuum conditions (typical conditions used were T= −50°C and P=80Pa nitrogen). Observations were performed at 15–25kV using a low-vacuum SE detector (Jacka et al., 2003). This SE detector is adapted for working under variable pressure conditions, enabling organic matter visualization and the higher voltages allowed use of a BSE detector for the discrimination of mineral particles with high atomic numbers, that is, nZVI and lectin–gold labeling. EDS was used for chemical analysis using an EDAX Team EDS systemwith a silicon drift detector EDAX Apollo XPP (EDAX, Mahwah, NJ, USA) at a working distance of 15mm (detector area 10mm2, collection solid angle 5msrad).
STEM-in-SEM and (S)TEM (in TEM)
Samples (biofilms attached to the inner face of PVC tubes) were prefixed with glutaraldehyde after lectin–gold labeling while still attached to their support, thus limiting manipulations for biofilm sampling (detachment from the PVC tube) and subsequent perturbation of its structure. It appeared that the biofilms then came off their support during the fixation process. This appeared to be an advantage
for observations, as it was easier to make cross-sections on the fixed biofilm after its detachment from the growth support. STEM-in-SEM analysis was conducted with a STEM
detector used in the VP-FE-SEM using bright field (BF) and dark field (DF) imaging (Fig. 2) in combination with SE and BSE detectors. EDS analysis was performed for identifying particles using an EDAX Team EDS system. TEMobservations in combination with EDS analysiswere
performed on a Philips CM20 (Eindhoven, The Netherlands) LaB6 operated at 120 kV and a JEOL ARM200F (Tokyo,
Japan) Cold-FEG equipped with an EDS system JEOL Centurio (detection area 100mm2, collection solid angle 0.98 srad) (JEOL, Tokyo, Japan) operated at 80 kV.
RESULTS AND DISCUSSION
Fluorescent Microscopy The interaction of biofilms (as flocs) with nZVI was initially analyzed using fluorescent microscopy after DAPI and lectins (as PNA-FITC and ConA-FITC) labeling, to target cells and EPS (as exopolysaccharides), respectively (Michel et al., 2016). The two tested lectins-FITC positively labeled the studied flocs (Fig. 3). Lectin labeling was detected close to/ around cells, strongly suggesting the presence of capsular exopolysaccharides (Fig. 3). nZVI aggregates (as black aggregates detected only in flocs in contact with nZVI) were embedded in the biofilm structure as shown on Figure 3, strongly suggesting that biofilms were able to interact with nZVIs and acted as a trap. However, with this technique, it was not possible to detect nZVIs as single particles, but as 0.5–5 µm aggregates. With varying focus, nZVI aggregates
could not be observed. They were absent in deep zones of the flocs where cell density was very high, suggesting that they were only located at the periphery of flocs. Fluorescent microscopy can thus be considered here as an interesting, rapid and low-cost screening approach, but it was not precise enough to appreciate EPS and nZVI distribution in the stu- died biofilm (Table 2). Biofilm’s EPS labeling by lectins can also be achieved using electron microscopy. In this case, lec- tins have to be associated to a metal instead of a fluorescent dye. PNA and ConA (this time as PNA and ConA coupled to
gold nanoparticles), as they gave a positive labeling using fluorescent microscopy, were thus tested for the labeling of the extracellular matrix of the studied biofilm in STEM experiments (Kämper et al., 2004). This approach takes more time and is more expensive than fluorescent microscopy but it offers the advantage of higher resolutions (Tables 1 and 2).
Cryo-SEM
Figure 2. Scanning transmission electron microscopy (STEM)-in- scanning electron microscopy (SEM) detector on the Tescan Mira stage. BSE, backscattered electron; TEM, transmission electron microscopy; BF, bright field; DF, dark field.
Cryo-SEM was applied to observe biofilm development and location of EPS (via lectins–gold labeling) and nZVI, and also to observe bacterial attachment onto sand grains. SEM observations were performed on bulk samples (with or without fractionation) of the sample in the preparation chamber on the Hitachi SEM. SE imaging enables the observation of the organic molecules and thus the biofilm on its own, biofilm colonization of sand grains, and their interactions with nZVI. In contrast, the location and iden- tification of lectin–gold labels and nZVI is more efficient using a BSE detector and EDS microanalysis. Indeed, a gold coating layer (available on the cryo-SEM chamber of this SEM) could be a problem for applying EDS analysis for the identification of gold nanoparticles (from lectin–gold label- ing) as well as the location of lectin–gold labeling and nZVI. This therefore required the use of a variable pressure SEM.
Page 1 |
Page 2 |
Page 3 |
Page 4 |
Page 5 |
Page 6 |
Page 7 |
Page 8 |
Page 9 |
Page 10 |
Page 11 |
Page 12 |
Page 13 |
Page 14 |
Page 15 |
Page 16 |
Page 17 |
Page 18 |
Page 19 |
Page 20 |
Page 21 |
Page 22 |
Page 23 |
Page 24 |
Page 25 |
Page 26 |
Page 27 |
Page 28 |
Page 29 |
Page 30 |
Page 31 |
Page 32 |
Page 33 |
Page 34 |
Page 35 |
Page 36 |
Page 37 |
Page 38 |
Page 39 |
Page 40 |
Page 41 |
Page 42 |
Page 43 |
Page 44 |
Page 45 |
Page 46 |
Page 47 |
Page 48 |
Page 49 |
Page 50 |
Page 51 |
Page 52 |
Page 53 |
Page 54 |
Page 55 |
Page 56 |
Page 57 |
Page 58 |
Page 59 |
Page 60 |
Page 61 |
Page 62 |
Page 63 |
Page 64 |
Page 65 |
Page 66 |
Page 67 |
Page 68 |
Page 69 |
Page 70 |
Page 71 |
Page 72 |
Page 73 |
Page 74 |
Page 75 |
Page 76 |
Page 77 |
Page 78 |
Page 79 |
Page 80 |
Page 81 |
Page 82 |
Page 83 |
Page 84 |
Page 85 |
Page 86 |
Page 87 |
Page 88 |
Page 89 |
Page 90 |
Page 91 |
Page 92 |
Page 93 |
Page 94 |
Page 95 |
Page 96 |
Page 97 |
Page 98 |
Page 99 |
Page 100 |
Page 101 |
Page 102 |
Page 103 |
Page 104 |
Page 105 |
Page 106 |
Page 107 |
Page 108 |
Page 109 |
Page 110 |
Page 111 |
Page 112 |
Page 113 |
Page 114 |
Page 115 |
Page 116 |
Page 117 |
Page 118 |
Page 119 |
Page 120 |
Page 121 |
Page 122 |
Page 123 |
Page 124 |
Page 125 |
Page 126 |
Page 127 |
Page 128 |
Page 129 |
Page 130 |
Page 131 |
Page 132 |
Page 133 |
Page 134 |
Page 135 |
Page 136 |
Page 137 |
Page 138 |
Page 139 |
Page 140 |
Page 141 |
Page 142 |
Page 143 |
Page 144 |
Page 145 |
Page 146 |
Page 147 |
Page 148 |
Page 149 |
Page 150 |
Page 151 |
Page 152 |
Page 153 |
Page 154 |
Page 155 |
Page 156 |
Page 157 |
Page 158 |
Page 159 |
Page 160 |
Page 161 |
Page 162 |
Page 163 |
Page 164 |
Page 165 |
Page 166 |
Page 167 |
Page 168 |
Page 169 |
Page 170 |
Page 171 |
Page 172 |
Page 173 |
Page 174 |
Page 175 |
Page 176 |
Page 177 |
Page 178 |
Page 179 |
Page 180