search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Selectively Electron-Transparent Microstamping 1093


and after stamping to determine the loss of resolution when calculating elastic lattice distortion, which is a combination of strain and local rotation. Epitaxial silicon is nearly strain and dislocation free, meaning that any measured distortion can be considered erroneous. Additionally, because it is a single crystal, any effect that orientation has on the noise level of HREBSD is mitigated. The scans were taken at 20 keV with a beam current of 13nA over a 60×60 μm area with a step size of 0.4 μm in a Helios™ SEM. The patterns were collected with no binning on a Hikari Super™camera with no gain and an exposure time of 200ms. The working distance was ~12 and 13mm, before and after stamping, respectively. The lattice distortion between neighboring patterns (β) was calculated [such as would be calculated to determine lattice distortion gradients (Ruggles et al., 2016a)] instead of the distortion relative to a single reference point. This was done to minimize the effect of pattern center error (Alkorta, 2013), but it also means that the interaction between the urethane stamp and HREBSD performed on patterns from very different pattern centers was not exam- ined. The relative elastic distortion is reported instead of the distortion gradient or dislocation density for easier com- parison with measurements from DIC. The HREBSD


a


calculations were performed with OpenXY (Brigham Young University, 2016). The measured distortion before stamping is shown in


Figure 2a, and the distortion after the stamp is shown in Figure 2b. This distortion is reported in the reference frame of the phosphor screen of the EBSD camera, i.e. the z- direction is normal to the phosphor screen. Presenting the data in this way allows for easy separation of the terms more sensitive to noise, β31 and β32 (Alkorta, 2013). The average Frobenius norm of the lattice distortion was 585 microstrain before the stamp and 751 microstrain after. Because this measured strain is entirely noise, these results suggest that the stamp increased the noise of HREBSD by 28%. If the problematic β31 and β32 terms are excluded, the error level drops to 271 and 308 microstrain before and after stamping, respectively, for an increase of only 13%. This small increase in error demonstrates the compatibility of HREBSD with urethane microstamped patterns. It is also relevant that there is no apparent correlation between the noise and the SEM micrograph of the stamp shown in Figure 2c. This suggests that the decrease in pattern quality associated with the beam passing through a speckle is negligible compared with the total error.


b


β11


β12


β13


β11


β12


β13


β21


β22


β23


β21


β22


β23


β31


β32


β33


β31


β32 c 60 m -600 -300 0 microstrain


Figure 2. Lattice distortion measured over a 60 μm2 area of an epitaxial Si single crystal at a 400nm step size before (a) and after (b) microstamping. The distortion at each point is calculated relative to its neighbor to the right. The distortion components are given in the reference frame of the phosphor screen, where the three-direction is normal to the surface. An scanning electron microscope micrograph of the area after stamping is shown in (c).


300 600


β33


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180