search.noResults

search.searching

note.createNoteMessage

search.noResults

search.searching

orderForm.title

orderForm.productCode
orderForm.description
orderForm.quantity
orderForm.itemPrice
orderForm.price
orderForm.totalPrice
orderForm.deliveryDetails.billingAddress
orderForm.deliveryDetails.deliveryAddress
orderForm.noItems
Bright-Field Microscopy of Transparent Objects 1117


Figure 1. In the absence of a specimen, a uniform illumination at the focal plane (2) of the objective (1) produces no contrast (a). The refractive specimen (3), which, for the sake of simplicity, is depicted here as a lens, alters the distribu- tion of intensity at the focal plane of the objective; the latter may lie inside (b) or outside (c) the sample. The intensity pattern at the focal plane is reproduced by the optical system and generates an image. In the case (b), one expects a lighter area in the central part, where the density of back-projected rays is higher. In the case (c), the area immediately outside the cone of light formed by the specimen is completely dark. (This effect can be easily observed by putting a lens under the microscope.)


usually true for live biological cells. Then, the angle of refrac- tion dα=α−β is small, and Equation (1) can be written as:


sinα sinðα - dαÞ


= sinα sinα - dsinα =


sinα - dαcosα = sinα


1 - dα = tanα =n: (2)


1


From here we find the refraction angle: dα = n - 1


ðÞtan α = n - 1


Figure 2. General setup in transmission brightfield imaging. 1,—slide; 2, focal plane; 3, object; 4, coverglass; 5, objective.


ðÞ


dhðxÞ dx ;


(3)


where h(x) is the height of the object boundary over the focal plane (it can be positive or negative), and x is the position on the focal plane where it would be intersected by the incident ray in the absence of the sample. Refraction causes a shift of the intersection point from x to x'. For small refraction angles dα:


x0 = x + hx ðÞdα = x + hx ðÞðÞ n - 1 ðÞdx;


dhðxÞ dx :


Image intensity I(x′) satisfies the equation: Ix0ðÞdx0 =I0 x


(4) (5)


where I0(x) is the incident light intensity. Equation (5) states the condition of energy conservation: all the incident rays that would arrive at the element dx without refraction are deflected to the element dx' in the presence of refraction. If we assume uniform illumination and use relative intensities, we can set I0(x)=1. Then:


Ix0ðÞ= dx dx0


= 1 dx0=dx ;


Figure 3. The diagram of rays crossing the sample. A vertical incident ray R impinges on the object boundary S at the angle α. Refraction causes its deflection from the vertical line by dα. The point of intersection of R and S lies at the distance h from the focal plane F. As a result, the point where the R ray crosses the focal plane F shifts from x to x′. The focal plane is designated as xy, and the refraction takes place in the xz-plane.


or, taking Equation (4) into account: Ix0ðÞ= 1 + n - 1


ðÞ hx d2hx = 1 + n - 1


"#-1 ðÞ


() ðÞ dx2 + dh x


 2


ðÞ dx


-1 ðÞdx hx


d ðÞ dx


dh x


-1 = 1 + n - 1 d2 h2 x


ðÞ 2


fg dx2


ðÞ : ðÞ ð7Þ (6)


Page 1  |  Page 2  |  Page 3  |  Page 4  |  Page 5  |  Page 6  |  Page 7  |  Page 8  |  Page 9  |  Page 10  |  Page 11  |  Page 12  |  Page 13  |  Page 14  |  Page 15  |  Page 16  |  Page 17  |  Page 18  |  Page 19  |  Page 20  |  Page 21  |  Page 22  |  Page 23  |  Page 24  |  Page 25  |  Page 26  |  Page 27  |  Page 28  |  Page 29  |  Page 30  |  Page 31  |  Page 32  |  Page 33  |  Page 34  |  Page 35  |  Page 36  |  Page 37  |  Page 38  |  Page 39  |  Page 40  |  Page 41  |  Page 42  |  Page 43  |  Page 44  |  Page 45  |  Page 46  |  Page 47  |  Page 48  |  Page 49  |  Page 50  |  Page 51  |  Page 52  |  Page 53  |  Page 54  |  Page 55  |  Page 56  |  Page 57  |  Page 58  |  Page 59  |  Page 60  |  Page 61  |  Page 62  |  Page 63  |  Page 64  |  Page 65  |  Page 66  |  Page 67  |  Page 68  |  Page 69  |  Page 70  |  Page 71  |  Page 72  |  Page 73  |  Page 74  |  Page 75  |  Page 76  |  Page 77  |  Page 78  |  Page 79  |  Page 80  |  Page 81  |  Page 82  |  Page 83  |  Page 84  |  Page 85  |  Page 86  |  Page 87  |  Page 88  |  Page 89  |  Page 90  |  Page 91  |  Page 92  |  Page 93  |  Page 94  |  Page 95  |  Page 96  |  Page 97  |  Page 98  |  Page 99  |  Page 100  |  Page 101  |  Page 102  |  Page 103  |  Page 104  |  Page 105  |  Page 106  |  Page 107  |  Page 108  |  Page 109  |  Page 110  |  Page 111  |  Page 112  |  Page 113  |  Page 114  |  Page 115  |  Page 116  |  Page 117  |  Page 118  |  Page 119  |  Page 120  |  Page 121  |  Page 122  |  Page 123  |  Page 124  |  Page 125  |  Page 126  |  Page 127  |  Page 128  |  Page 129  |  Page 130  |  Page 131  |  Page 132  |  Page 133  |  Page 134  |  Page 135  |  Page 136  |  Page 137  |  Page 138  |  Page 139  |  Page 140  |  Page 141  |  Page 142  |  Page 143  |  Page 144  |  Page 145  |  Page 146  |  Page 147  |  Page 148  |  Page 149  |  Page 150  |  Page 151  |  Page 152  |  Page 153  |  Page 154  |  Page 155  |  Page 156  |  Page 157  |  Page 158  |  Page 159  |  Page 160  |  Page 161  |  Page 162  |  Page 163  |  Page 164  |  Page 165  |  Page 166  |  Page 167  |  Page 168  |  Page 169  |  Page 170  |  Page 171  |  Page 172  |  Page 173  |  Page 174  |  Page 175  |  Page 176  |  Page 177  |  Page 178  |  Page 179  |  Page 180